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ldeas and slides borrowed from
IRAM interferometry school
http://www.iram-institute.org/EN/content-page-331-7-67-331-0-0.html|

NRAO interferometry school

https://science.nrao.edu/science/meetings/2016/15th-synthesis-imaging-workshop

LOFAR school

http://www.astron.nl/lofarschool2016/

European Radio interferometry (ERIS) school

https://www.eso.org/sci/meetings/2015/eris2015.html
Synthesis Imaging in Radio Astronomy: Il - The “White Book”

Virtual Radio Interferometer
http://www.narrabri.atnf.csiro.au/astronomy/vri.html



submm interferometer....

Radio band mm-submm IR Optical window
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Resolution of Observations

Angular resolution for most telescopes is ~ A/D
* D Is the diameter of the telescope
* AlIs wavelength of observation

For example, Hubble Space Telescope:
* A~1um/D of 2.4m = resolution ~ 0.13"

To reach that resolution for a A ~1mm observation,
one would need a 2 km-diameter dish!

Instead, we use arrays of smaller dishes to achieve
the same high angular resolution at radio frequencies
This is interferometry



How do we use interferometry? + +

A signal from space arrives at each
antenna at a slightly different time (due to
different travel lengths) depending on the
location of the antenna in the array.

The signal from each antenna is
then combined with every other
antenna in a correlator, where
the time delay is measured an
compensated for in the
software.

he signals arriving
from slightly different
points in the sky
arrive at slightly
different times at
each antenna. This
provides location
information within the
telescope beam and
thus positional
information about the
emitting object.



Some instrument details...
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To precisely measure arrival times we need very accurate
clocks

« At Band 10 one wavelength error = 1 picosecond (!!)

« We need << 1 wavelength timing precision so each antenna
has an on-board clock with high sampling rates

Once determined, the reference time is distributed to all
antennas




Some instrument details...

Signal from each antenna are digitized and sent to the correlator for multiplication & averaging.
For ~50 antennas the data rate is 600 GB/sec for the correlator to process



Interferometers: the basics

» Interferometry: a method to ‘synthesize’ a large
aperture by combining signals collected by separated
small apertures

* An Interferometer measures the interference pattern
produced by two apertures, which is related to the
source brightness.

» The signals from all antennas
are correlated, taking into
account the distance (baseline)
and time delay between
pairs of antennas
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Diffraction has important implications for optical instruments

Even for perfectly designed optics the image of a point source
will be a little blurry - the circular aperture produces diffraction.

Image plane
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The size of the spot is determined by the diametér, D,

of the aperture, and wavelength, A, of the incident light.

Diffraction by a circular aperture is similar to single-slit
diffraction. But note the difference:

: A Circular
0,
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The “Airy disk”".
The central lobe contains
84% of power.




Interferometers: the basics
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Interferometers: the basics

. ® Point source
at infinity

AB=pb

Avﬂvﬂ ﬁ‘hl

phase

Spatial Frequency A\b

If we observe at different A,
we sample different spatial
frequencies



Interferometers: the basics

AN

« Amplitude tells “how

much” of a certain
frequency component

« Phase tells “where” this

component is located

v

Visibility



Graphic courtesy Andrea Isella

Visibility and Sky Brightness
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The Fourier Transform

Fourier theory states that any well behaved signal (including
Images) can be expressed as the sum of sinusoids

Reference signal

4 sinusoids sum of sinusoids & signal

* The Fourier transform is the mathematical tool that decomposes a signal
into its sinusoidal components

L ]

The Fourier transform contains all of the information of the original signal



The Fourier Transform relates the
measured Interference pattern to the
radio intensity on the sky

1. An interferometer measures the interference pattern
produced by pairs of apertures.

2. The interference pattern is directly related to the source
brightness:

+ For small fields-of-view: the complex visibility, V(u,v), is
the 2D Fourier transform of the brightness on the sky,

T(Xy)

(van Cittert-Zernike
theorem)



The Fourier Transform relates the
measured interference pattern to the

radio intensity on the sky

Fourier space/domain Image L —
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Some 2D Fourier Transform Pairs

T(xy) Amp{V(u,v)}
® Function Constant
Gaussian Gaussian

narrow features transform to wide features (and vice-versa)
:



2D Fourier Transform Pairs
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Interferometers: the baseline in the uv plane

each antenna pair —> a point in uv plane
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Sampling Function

Each antenna pair samples only one spot; the array cannot
sample the entire Fourier/uv domain resulting in an imperfect
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Small uv-distance: short baselines (measure extended emission)
Long uv-distance: long baselines (measure small scale emission)

E Orientation of baseline also determines orientation in the uv-ﬁlane




1 visibility
for each baseline

for each channel

foreacht .
integration time
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Aperture synthesis:
Earth rotation helps covering the uv plane
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PSF shape vs. N ants

2 antennas
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PSF shape vs. N ants

8 antennas
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sampling uv vs. MRS the zero spacing problem

Maximum recoverable scale
» Zero/ short spacing missing in interferometry
» filtering of large scale emission

Dmin

* Gaussian sources Bmin Compact  Extended
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sampling uv vs. MRS the zero spacing problem

+ Zero/ short spacing missing in interferometry
+ filtering of large scale emission

Dmin

* CGaussian sources Bmin Compoct  Extended
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sampling uv vs. MRS the zero spacing problem

 Zero short spacing missing in interferometry
- filtering of large scale emission

Dmin
« Gaussian sources Bmin Compact  Extended

05K

Baseline length [m]



sampling uv vs. MRS the zero spacing problem

« Zero short spacing missing in interferometry
+ filtering of large scalle emission

« Gaussian sources
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Synthesis array is "blind' to structures on angular scales both
smaller and larger than the range of fringe spacings given by the

antenna distribution.

FOV Resolution

FOV-~4/D ® -~A/B

Sensitivity
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Maximum scale
observable

System temperature
Effective area
Number of Antennas
Bandwidth
Observing time



Glossary: Flux vs. Brightness

- Temperature and Fluxes (Rayleigh-Jeans)
+ S = Flux density (Jy, Jy per beam)
+ T = brightness temperature (K)

« Kk Boltzmann constant

- Qg solid angle (steradian)

+ Bp HPBW of a gaussian

T S, ) | :-.:uu{:uz)“
—_— ] = 13.6
(1 K 1 Jy ( Z (

1Jy=1026Wm—=2Hz-1=10-2 erg s-1 cm—2 Hz-"

]H
Frl’i'lil'l I

)(

17
HIHHTJ'

)|



Glossary: Flux vs. Brightness

- Sensitivity: depends on ... a lot of things

The rms noise in the signal (sensitivity):
Tsys is the brightness temperature equivalent to the flux received from the antenna
source, atmosphere, instrumental noise....

i 2k Tyys
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nqn::Aeﬂ' N/N(N - 1) HE@D
Sensitivity can be improved by:

- getting lower Tsys (sites with low water vapour levels)
- increasing the collecting area
- increasing the bandwidth and/or the integration time



The interferometric data output

(ALMA) data format—> the cube

@mm wavelengths molecular spectroscopy
wide spectral range (~8GHz)
each spw divided into several channels

Cont Freq
2 GHz
—A




The interferometric data output

(ALMA) data format—> the cube

@mm wavelengths molecular spectroscopy
wide spectral range (~8GHz)
each spw divided into several channels

Cont Freq

JlliFrequency
(GHz)




The interferometric data output

(ALMA) data format—> the cube

From each channel, one uv-plane/image 1s produced

Spectral line observations have up to 3840 channels. The
highest spectral resolution achieavable 1s 30 kHz.
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