Osservazioni di Flares Solari con ALMA

Corrado Trigilio INAF-Osservatorio Astrofisico di Catania

Buemi C.S.¹, Leto P. ¹, Romano P.¹, Umana G.¹, Zuccarello F.² ¹INAF-OACT, ²UniCT

Flares solari

Fenomeni più energetici dell'atmosfera solare Rilascio di energia tramite riconnessione magnetica Importanza per riscaldamento coronale, CME, interazione con mezzo interplanetario, space weather...

Si manifestano:

nella corona, sopra le regioni attive,
interessandi tutti gli strati atmosferici
soprattutto nei periodi di massimo di attività

Visibili in tutte le bande dello spettro EM (diversi processi fisici)

A volte associati a Coronal Mass Ejections

Energie: 10²³ – 10³² erg

Flarec lasse X5.4 Del 7 Marzo 2012 -- SDO

Lo spettro ad alta energia

RHESSI: bremsstrahlung durante fase impulsiva

Soft X-ray termico associato al loops

Hard X-ray non termico localizzato ai piedi del loop e sopra il loop Elettroni non termici + B \rightarrow radio (girosincrotrone)

Riconnessione e Accelerazione particelle

Hard X-ray osservati alle basi del loop e al top

Yohkoh X-ray Image of a Solar Flare, Combined Image in Soft X-rays (left) and Soft X-rays with Hard X-ray Contours (right). Jan 13, 1992.

Correlazione Soft-X (Yohkoh) - Radio (NoRH) 1993-3-16 flare. Strutture simili (Hanaoka, Y. 1994) Soft X-ray e girosincrotrone (centimetrico) associate ai loop

 $L_{SXR} / L_{RADIO} \approx 10^{15.5 \pm 0.5} \text{Hz}$

Effetto Neupert

Soft X-ray in ritardo rispetto al radio e all'Hard X-ray

Soft X-ray dovuto alla termalizzazione degli elettroni non termici

$$f_{SXR}(t) \propto \int f_{RADIO}(t) dt$$

Scenario:

- 1) Accelerazione particelle $N(E) \propto E^{-\delta}$ dovuta a riconnessione magnetica (radio, HXR Bremsstrahlung non termico)
- 2) Termalizzazione col plasma locale, riscaldamento (SXR Bremmstrahlung termico)

Effetto Neupert

Soft X-ray in ritardo rispetto al radio e all'Hard X-ray

Soft X-ray dovuto alla termalizzazione degli elettroni non termici

$$f_{RADIO}(t) \propto \frac{df_{SXR}(t)}{dt}$$

Scenario:

- 1) Accelerazione particelle $N(E) \propto E^{-\delta}$ dovuta a riconnessione magnetica (radio, HXR Bremsstrahlung non termico)
- 2) Termalizzazione col plasma locale, riscaldamento (SXR Bremmstrahlung termico)

Flare del 24 Agosto 2002

Classe X3.1 Singolo loop al bordo del disco Inizio: top-loop + footpoints Decadimento: loop

Diversi episodi di accelerazione

Temperature di brillanza:

$$T_B \approx 10^8 - 10^9 \mathrm{K}$$

Densità maggiori al loop top.

Indice spettrale

$$-1 < \alpha < 1$$
 $S_v \propto v^{\alpha}$

Karlicky, 2004 Reznikova et al. 2008

Emissione radio: Modello evolutivo

Trigilio et al 2012 (in prep)

Serie di loops dipolari Accelerazione al top del loop Propagazione nel loop, densità costante per magnetic mirroring

Perdite di energia: radiative e collisionali

 $N(E) \propto E^{-\delta}$ 0.05 < E < 25 MeV

 $\frac{dE}{dt} = aB^2E^2 + bN_{th}$

Pitch angle $heta_{top}$ elettroni isotropi al top

Intensificazione di $B \rightarrow$ magnetic mirroring Propagazione fino a profondità tale che

$$B_{\max} = \frac{B_{top}}{\sin^2 \theta_{top}}$$

Perdite di energia diverse in funzione di θ_{top}

Loop campionato in sezioni

 $\Delta B/B \approx 0.1$

In ogni sezione viene "costruita" N(E) come somma delle varie popolazioni di elettroni Perdite di energia: radiative e collisionali

$$\frac{dE}{dt} = aB^2E^2 + bN_{th}$$

Effetti maggiori nella bassa corona (alto B, alto N_{th})

Bassa corona

Spettro "piatto" a basse $E \rightarrow \alpha > 0$ Rapido decadimento alte ETagli alte freq, ma B alto \rightarrow emissione alte v

Alte freq radio associate fase accelerazione

Spettro "meno piatto" a basse $E \rightarrow \alpha$ "più negativo" Meno rapido decadimento alte ETagli alte freq, ma B alto \rightarrow emissione persistente Calcolo coeff. Emiss. e assorb. per girosincrotrone (Chiuderi Frago & Melozzi 1984) per spettro elettronico arbitrario Calcolo T_B, flussi, mappe

34 GHz

Modello in ottimo accordo con i dati: •Flussi,indice spettrale, T_B e loro evoluzione

Volume totale Elettroni relativistici Elettroni termici Energia totale elettroni $V = 2 \times 10^{29} \text{ cm}^{3}$ $N_{rel} = 10^{6} - 10^{7} \text{ cm}^{-3}$ $N_{th} = 10^{9} - 10^{11} \text{ cm}^{-3}$ $E_{kin} = 3 \times 10^{29} \text{ erg}$

Energia protoni non considerata

Temperature di brillanza alle bande ALMA				
Freq (Band)	t	T _B base	Т _в top	
100 GHz (3)	0	5x10 ⁷	10 ⁶	
	2 ^m	10 ⁶	2x10 ⁴	
230 GHz (6)	0	4x10 ⁷	10 ⁶	
	2 ^m	10 ⁶	10 ³	
345 GHz (7)	0	10 ⁶	10 ⁴	
	2 ^m	10 ⁵	10 ²	
675 GHz (9)	0	2x10 ⁵	10 ³	
	2 ^m	10 ⁴	10	

Flares Solari con ALMA

Durante i flares c'è **emissione nel mm e sub-mm per girosincrotrone**: •associata alla regione di accelerazione (top loop) e alla base del loop •alta temperatura di brillanza

Possibilità di studiare:
processi di accelerazione alle alte energie
processi di dissipazione nella bassa atmosfera

Per mezzo di:•alta sensibilità•alta risoluzione spaziale e temporale

Problemi e peculiarità:
•campo di vista ridotto
•necessaria rapida risposta ai flares
•Il Sole ha una un suo moto, considerare anche rotazione differenziale

NASA-SDO

0

Active region 1429

Configurazione compatta Baseline 18 – 125 m

Per il Sole: 1″ → 725 km

Band	λ (mm)	Field of view (")	Maximum scale (")	Angular Risoluz (")
3	3	62	21	5.3
6	1.3	27	9	2.3
7	0.8	18	6	1.6
9	0.45	9	3	0.8

Band	λ (mm)	Field of view (km)	Maximum scale (km)	Linear Risoluz (km)
3	3	45 000	15 000	3800
6	1.3	20 000	6500	1700
7	0.8	13 000	4300	1100
9	0.45	6 500	2200	580

Configurazione estesa Baseline 36 – 400 m

Band	λ (mm)	Field of view (")	Maximum scale (")	Angular Risoluz (")
3	3	62	10.5	1.56
6	1.3	27	4.5	0.68
7	0.8	18	3	0.45
9	0.45	9	1.5	0.23

Band	λ (mm)	Field of view (km)	Maximum scale (km)	Linear Risoluz (km)
3	3	45 000	7500	1100
6	1.3	20 000	3200	500
7	0.8	13 000	2100	330
9	0.45	6 500	1100	170

Simulazioni con CASA

Selezione di loop coronali possibili luoghi di flare

Assunzioni: $F_{UV} \iff F_{radio}$ $T_b = 10^6$ K al picco

STEREO- SECCHI - EUVI 7/12/2011 pix=1.5″ λ=171 Å

12000

2000

4000

6000

8000

10000

14000

16000

Simulazioni con **CASA** (simdata)

Configurazione compatta Configurazione estesa

Ciclo 0

Bande 3 e 6

Necessari mosaici per coprire tutto il campo: Banda 3 – 25 fields Banda 6 – 111 fields

Simulazioni con CASA 100 GHz

Compact configuration FOV=62" Beam=5.5"x4.6"

Un solo campo

Simulazioni con CASA 100 GHz

Compact configuration FOV=62" Beam=5.5"x4.6"

10⁵

8×10⁴

6×10⁴ (Jy/beam) 4×10⁴

2×10⁴

Simulazioni con CASA 230 GHz

Compact configuration FOV=27" Beam=3.9"x1.9"

Un solo campo

Simulazioni con CASA 230 GHz

Compact configuration FOV=27" Beam=3.9"x1.9"

Mosaico con 7 campi

Conclusioni

Grandi potenzialità con ALMA

- T_B previste molto alte nel mm/submm
- Sensibilità e alta risoluzione spaziale
- Possibilità di t_{int} brevissimi
- Possibilità di dividere ALMA in subarray per mosaicing simultaneo

