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• PhD @Kyoto University in March 2014

• “Study of Radio-Loud Active Galactic Nuclei with X-Ray 
Observations”

• Present work: Development of a system to reconstruct 
super-resolved images with “sparse modeling.”

Newcomer to radio astronomy!



Toward Snapshot of Black Hole 

• Event Horizon Telescope (EHT)

EHT-Japan activities

- Adding ALMA to EHT as a VLBI station (ALMA Phase-up Project)
✤ Developed and tested the optical fiber link system in Japan.

✤ Installed the optical fiber link system on ALMA in 2014.

✤ Performed the setup test in 2014.

- Test data analysis of M87 (Akiyama et al., submitted)

- Development of a new imaging technique
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Counter Jet

An optimal model will be obtained with ALMA.

(Akiyama et al. submitted)

Test Observation of M87, Key Target of EHT

Broderick & Loeb, (2009)
Lu et al. (2014)

Approaching Jet

Dexter et al, (2012)

Accretion Disk
Dexter et al, (2012)

Detection of closure phase of M87 with EHT!!

Simulated and Observed Closure Phases

✴ Detected closure phases are 
consistent with zero.

✴ Data is consistent with all of the 
models.

✴ In near future we will distinguish 
the models, with closure phases 
including ALMA.



Counter Jet

An optimal model will be obtained with ALMA.

(Akiyama et al. submitted)

Test Observation of M87, Key Target of EHT

error ~ a few degrees

Broderick & Loeb, (2009)
Lu et al. (2014)

Approaching Jet

Dexter et al, (2012)

Accretion Disk
Dexter et al, (2012)

Detection of closure phase of M87 with EHT!!

Simulated and Observed Closure Phases

✴ Detected closure phases are 
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✴ Data is consistent with all of the 
models.
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the models, with closure phases 
including ALMA.



Conventional Interferometry Imaging
✴2D Fourier transformation of observed visibility
✴Observed visibility is sampled in UV (spatial frequency: 
baseline vectors seen from the target source) plane.

✴Imperfectly sampled visibility
→ fill unsampled place with zero → dirty image

UV sampling dirty image



Conventional Interferometry Imaging
✴2D Fourier transformation of observed visibility
✴Observed visibility is sampled in UV (spatial frequency: 
baseline vectors seen from the target source) plane.

✴Imperfectly sampled visibility
→ fill unsampled place with zero → dirty image

UV sampling dirty image

Image resolution is 
limited by beam size.



Development of Super-Resolution Technique

Conventional Imaging
zero-padded
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New Imaging

Image with a beam size and side lobes Beam-size free and side-lobe free

Unable to reconstruct 
black hole shadow feature

Successfully reconstruct 
black hole shadow feature

Honma et al. (2014)



M87 Image by Sparse Modeling

Reconstructed image of M87 by sparse modeling
with VLBA data @43GHz

CLEAN Image

Visibility sampling: 4472     →     Image grids: 1282 = 16384
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M87 Image by Sparse Modeling

Reconstructed image of M87 by sparse modeling
with VLBA data @43GHz

Jet limb-brightening and counter-jet are reconstructed!
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✴ Reproductivity of Observational Data

Reliability of the New Technique

✴ Consistency between Least Squares Method and Sparse Modeling 
Sparse Modeling Least Squares Method
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Observational Data
Sparse Modeling Image

(λ = 20) Model visibility calculated from 
sparse modeling image 
reproduces well observational 
data.

Two images of sparse modeling 
and least squares method are 
the same.

Visibility sampling: 4472
      ↓
Image grids: 642 = 4096

Well-posed problem



What the Super-Resolved Image Shows 
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What the Super-Resolved Image Shows 

000 0.0001 0.0002 0.0005 0.0011 0.0022 0.0045 0.0091 0.0184 0.0367 0.0

Position of the black hole
(preliminary)

Strongly support the core-
shift result (Hada et al. 2011).

We obtain the jet structure as a function of the distance
from the central engine (black hole).

↓
Key of “jet formation” and “physics of high energy emission”



Summary
✤ Japanese group is contributing to

- ALMA phase-up project (APP).
- science of M87.
- development of imaging technique with 

“sparse modeling.” 

Future Plan
✤ Development another new imaging technique, which 

reconstruct a image directly from closure phase.
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Summary
✤ Japanese group is contributing to

- ALMA phase-up project (APP).
- science of M87.
- development of imaging technique with 

“sparse modeling.” 

Future Plan
✤ Development another new imaging technique, which 

reconstruct a image directly from closure phase.
→　Well under way!

→　Successfully reconstructed M87 jets!

Preliminary!!
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Regularization Parameter in Sparse Modeling
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Regularization Parameter in Sparse Modeling
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least square sparsity

Large λ → high sparsity
              (most pixel values are zero)

Small λ → high data reproducibility

z: observed visibility, x: pixel value of image
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Regularization Parameter in Sparse Modeling
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z: observed visibility, x: pixel value of image



• ALMA OSF (correlator, recorder)
• AOS (antenna operating site, 
5000m)


