ALMA simulations

Rosita Paladino

& the Italian ARC

Two software tools available to help users simulate images resulting from an ALMA observations:

Simulations with CASA tasks sim_observe & sim_analyze (CASA 3.3) simobserve & simanalyze (CASA 3.4) Tasks to produce ALMA data from an input sky model (theoretical model or previous observations)

Observation Support Tool

The OST is a webtool hosted by the UK ARC with a website acting as a simple GUI to set parameters and run the simulations

Steps to simulations

model how the sky appears to the telescope.
Ideally the image should be noise-free and have infinite resolution
In practice: the input noise must be less than the expected output noise and resolution at least as sharp as the output resolution

using sim_observe

modify the model scale the spectral and spatial coordinates and the brightness

set pointings for mosaic observations

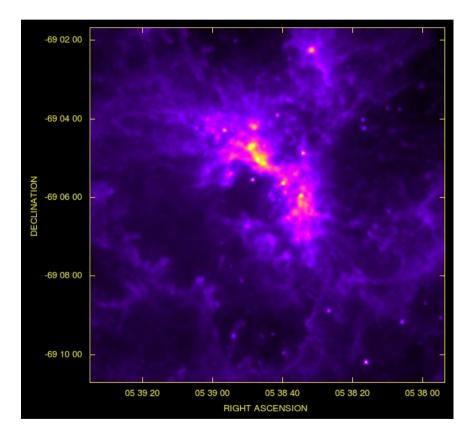
predict: calculate visibilities for a specified array

corrupt: add thermal noise

using sim_analyze

image the visibility data with clean

analyze calculate and display the difference between output and input, and the fidelity image


$$\frac{I(x)}{I(x) - T(x)}$$

I(x) observed image T(x) true intensity given

A very simple simulation

http://casaguides.nrao.edu/index.php?title=Simulation_Guide_for_New_Users_ %28CASA_3.3%29

HII region in the Large Magellanic Cloud D \sim 52 kpc

How it would look like if moved to the distance of M33 ~ 750 kpc?

30Dor Spitzer IRAC 8 μ m image from SAGE

input of sim_observe

CASA <2>: inp sim_ > inp(sim_ # sim_observe ::	obse mosa	rve) ic simulation tas	sk:		
project skymodel complist	= = =	'sim' ''	# # #	root prefix for output file names model image to observe componentlist to observe	model
setpointings integration direction mapsize maptype pointingspaci	= = =		# # # # #	integration (sampling) time "J2000 19h00m00 -40d00m00" or "" to center on model angular size of map or "" to cover model hexagonal, square, etc spacing in between pointings or "0.25PB" or "" for 0.5	pointing details PB
observe antennalist refdate hourangle totaltime caldirection calflux sdantlist sdant	= = =	True 'alma.out10.cfg' '2012/05/21' 'transit' '7200s' '1Jy' '1Jy' 0	# # # # # #	<pre>calculate visibilites using ptgfile antenna position file or "" for no interferometric MS date of observation - not critical unless concatting si hour angle of observation center e.g3:00:00, or "tra total time of observation or number of repetitions</pre>	nsit" bserving details
thermalnoise leakage graphics verbose overwrite async	= = = =	0.0 'both' False True False		add thermal noise: [tsys-atm tsys-manual ""] cross polarization display graphics at each stage to [screen file both non overwrite files starting with \$project If true the taskname must be started using sim_observe(corrupt

model

CASA <5>: project='cycle1_tut'

CASA <6>: skymodel='30dor.fits'

sym_observe will create a directory named
cycle1_tut where all outputs will be written

> inp() # sim observe ::	mosai	ic simulation	task:	
project	=	'cycle1 tut'	#	root prefix for output file names
skymodel	=	'30dor.fits'	#	model image to observe
inbright	=		#	scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"
indirection	=		#	set new direction e.g. "J2000 19h00m00 -40d00m00"
incell	=		#	set new cell/pixel size e.g. "0.1arcsec"
incenter	=		#	set new frequency of center channel e.g. "89GHz" (required even for 2D model)
inwidth	=		#	set new channel width e.g. "10MHz" (required even for 2D model)

CASA <7>: incenter='230GHz '

CASA <8>: inwidth='2GHz'

CASA<9>: inbright='0.06mJy/pixel'

CASA<10>: incell='0.15arcsec'

CASA<11>: indirection='J2000 10h00m00 -40d00m00'

We tell sim_observe that the model is actually a 230 GHz continuum map taken with a 2GHz band.

The surface brightness in this case is chosen such that the extended emission will be detected in few hours, usually one should calculate the expected brightness, using reliable tracers.

The incell tell sim_observe to rescale the pixels. The original cellsize is 2.2 arcsec, scaling it for the distance:

$$2.2 \frac{d_{old}}{d_{new}} = 0.15$$

pointing details

CASA <12>: setpointings=True

CASA <13>: integration='600s'

CASA<14>: direction=' '

- CASA<15>: mapsize=[' ',' ']
- CASA<16>: maptype='ALMA'
- CASA<17>: pointingspacing=' '

The 8μ m image is ~ 10' on a side, the rescaled model, covering ~40 arcsec, it will fit in a small mosaic of ~6 pointings.

The integration time is the averaging time for each data point. The default value is '10s', which is appropriate to simulate real observations. sim_observe run much faster using a larger value. So you could use a large value to set the input and check if they work, and then reduce the value to run a realistic simulation.

The default values for direction and mapsize tell sim_observe to center the observations on the model coordinates (indirection), and to cover the entire model with a mosaic. The default mosaic pattern 'ALMA' uses the same hexagonal algorithm as the OT. The default spacing sets the pointings half a primary beam apart, corresponding to Nyquist sample.

observing details

CASA <18>: observe=True

CASA <19>: totaltime='7200s'

CASA<20>: antennalist=' '

Here we set the observational details. Most of the parameters can be left unchanged since are not relevant for this simulation.

Two important ones are: the total observing time spent on source we set it to 2 hours, and antennalist wich defines the configuration of the array.

CASA has stored ALMA and ACA configuration files (as well as EVLA,WSRT, PdBI, CARMA, SMA) in the directory **mycasadir/data/alma/simmos/*cfg**, you can use them in this way:

CASA<20>: repodir=os.getenv("CASAPATH").split(' ')[0]

CASA<21>: antennalist=repodir +"/data/alma/simmos/alma.cycle0.compact.cfg"

sim_observe can also determine the array configuration to use, if you provide the desired resolution:

CASA<21>: antennalist='ALMA;0.5arcsec'

Or you can have your "own" configuration in the working directory:

CASA<21>: antennalist='miALMA.cfg'

The 6 different configurations available during Cycle 1 are already included in CASA 3.4, if using older versions can be downloaded from :

http://almascience.eso.org/documents-and-tools

corrupt

CASA <22>: thermalnoise="

This parameter allows to add thermal noise from the atmosphere and from the ALMA receivers according to ALMA specifications for each band.

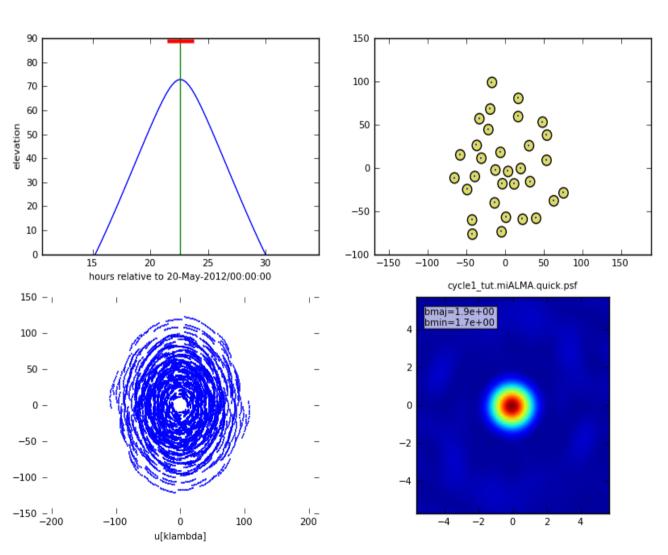
For interferometric simulations one can select thermalnoise = 'tsys-manual' or 'tsys-atm' for single-dish simulation, only tsys-manual is available.

tsys-atm uses a ATM model to construct an atmospheric profile for the ALMA site

thermalnoise	= 't	sys-atm'	#	add thermal noise: [tsys-atm tsys-manual ""]
user_pwv	=	1.0	#	Precipitable Water Vapor in mm
t ground	=	269.0	#	ambient temperature
seed	=	11111	#	random number seed

tsys-manual requires the user to specify **t_sky** the physical temperature in the atmosphere and **tau0** the zenit opacity in the center of the simulated band

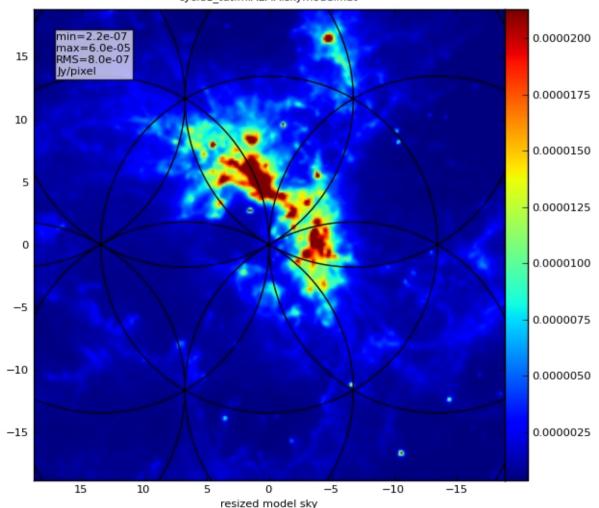
thermalnoise	= 'tsys-manual'
t_ground	= 269.0
tsky	= 263.0
tau0	= 0.1
seed	= 11111


#	add thermal noise: [tsys-atm tsys-manual ""]
#	ambient temperature
#	atmospheric temperature
#	zenith opacity
#	random number seed

Adding noise can be slow

for this very simple simulation we don't include any thermal noise

output of sim_observe


Output written to the dir 'project' in our case **cycle1_tut**

- 1. Simulated measurement set project.[conf].ms
- 2. CASA Image of the PSF project.[conf].quick.psf
- **3. CASA image of the rescaled skymodel** project.[conf].skymodel
- 4. Flattened CASA image of the skymodel project.[conf].skymodel.flat
- 5. ASCII text listing mosaic pointings project.[conf].ptg.txt
- 6. This PNG summary image project.[conf].observe.png

output of sim_observe

Image of the skymodel overlaid with mosaic pointings

cycle1_tut.miALMA.skymodel.flat

input of sim_analyze

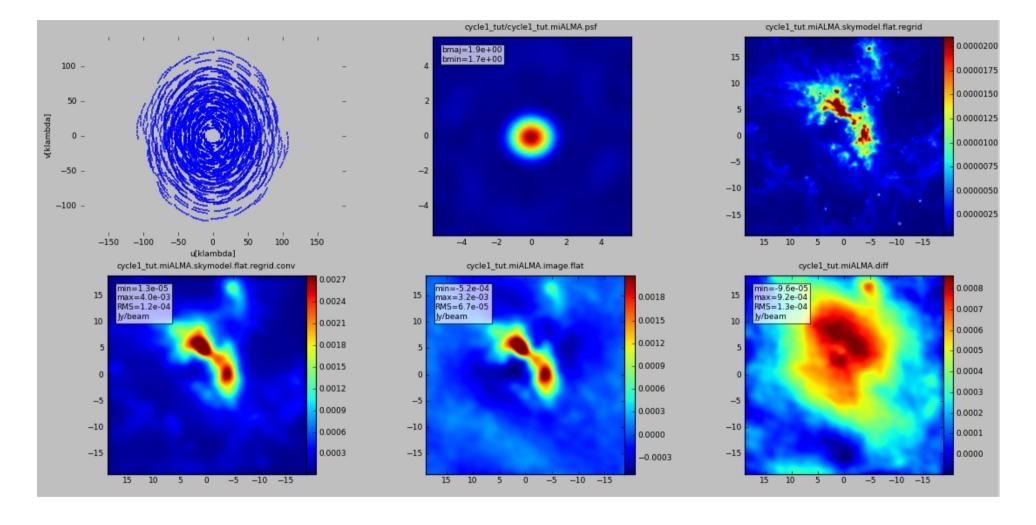
> inp() # sim_analyze :: i project		
<pre>image vis modelimage imsize imdirection cell niter threshold weighting</pre>	<pre>True True 'default' [252, 252] [</pre>	<pre># (re)image \$project.ms to \$project.image</pre>
analyze showuv showpsf showmodel showconvolved showclean showresidual showdifference showfidelity	= True = True = True = False = True = False	<pre># (only first 6 selected outputs will be displayed) # display uv coverage # display synthesized (dirty) beam (ignored in single dish simulation) # display sky model at original resolution # display sky model convolved with output beam Outputs # display the synthesized image # display the clean residual image (ignored in single dish simulation) # display difference image # display fidelity</pre>
graphics verbose overwrite async	= 'both' = False = True = False	<pre># display graphics at each stage to [screen file both none] # overwrite files starting with \$project # If true the taskname must be started using sim_analyze()</pre>

output of sim_analyze

CASA <18>: analyze=True

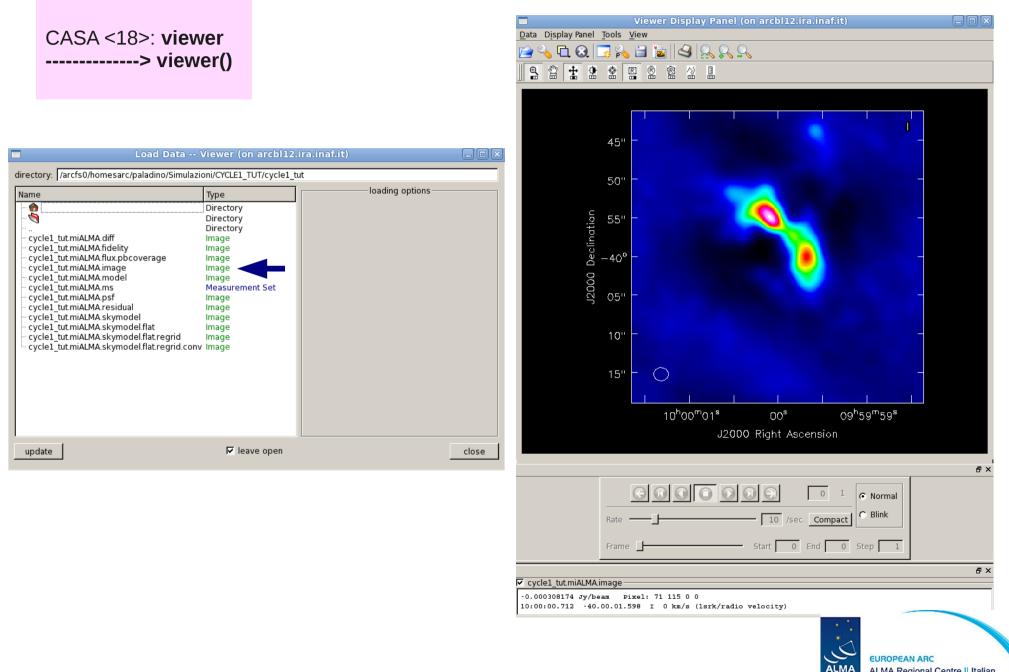
- CASA <19>: showuv=True
- CASA<20>: showpsf=True
- CASA<21>: showmodel=True
- CASA<22>: showconvolved=True
- CASA<23>: showclean=True
- CASA<24>: showresidual=False
- CASA<25>: showdifference=True
- CASA<26>: showfidelity=False
- CASA<27>: graphics='both'

Output written to the dir 'project' in our case **cycle1_tut**, if graphics = 'file' or 'both'

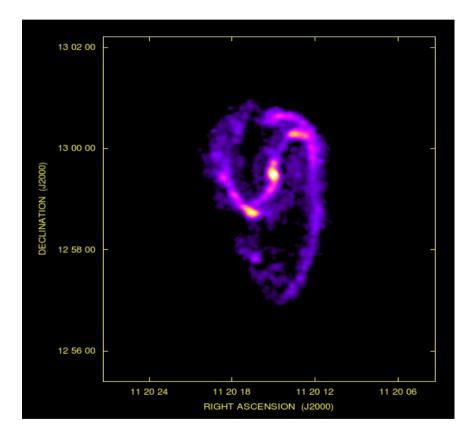

if graphics = 'screen' only the picked 6 plots will be displayed in the plotter

- 1. The uv coverage
- 2. The synthesyzed beam PSF project.[conf].psf
- **3. The original skymodel** project.[conf].skymodel.flat.regrid
- 4. The skymodel convolved with the synthesized beam project.[conf].skymodel.flat.regrid.conv
- 5. The cleaned image project.[conf].image.flat
- 6. The difference between the cleaned image and the convolved model project.[conf].diff

Not shown but saved: the residual image project.[conf].residual the fidelity image project.[conf].fidelity



output of sim_analyze displayed on the screen


Each image output can be visualized using the CASA viewer

ALMA Regional Centre || Italian

A more complex simulation

Following: http://casaguides.nrao.edu/index.php?title=M51_at_z_%3D_0.1_and_z_%3D_0.3_ %28CASA_3.3%29

NGC3627 at distance of 15 Mpc

How it would appear at redshift z=0.1?

BIMA SONG CO(1-0) observations (Helfer 2003)

sim_observe input

prepare the model

Cosmology calculations

z_old_cmb = 0.003587 (NED)
z_old_lsrk = 0.002425 (NED)
z_new = 0.1
da_old=15.081
da_new=375.9
dl_old=15.2
dl_new=454.8

Read from BIMA image:

beam properties: bmaj & bmin pixel size: oldCell flux peak: peak frequency:oldFreq number of channels: nchan channel width: oldDnu

Scale the image to an appropriate model: fluxScale=(dl_old/dl_new)**2*(1.0+z_new) / (1.0 + z_old_cmb) inbright="%fJy/pixel" % (peak*fluxScale)

```
Scale pixel size:
newCell= oldCell * da_old / da_new
incell = "%farcesec" % (newCell)
```

Adjust the frequency axis: newFreq = oldFreq * (1.0+z_old_lsrk) / (1.0+z_new) newDnu = abs ((1.0+z_old_lsrk) / (1.0+z_new) * oldDnu) inwidth = "%fHz" % newDnu incenter="%fHz" % (newFreq + 0.5*nchan*newDnu)

sim_observe input

Map size and mosaicing

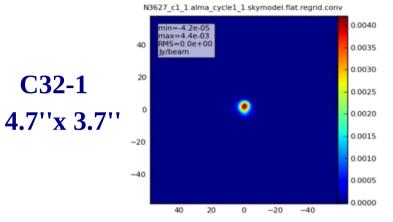
imSize = 400.0 *(da_old / da_new)
mapsize = "%farcsec" % imSize
primaryBeam = 17.0 * (300e9 / newFreq)
pointingspacing="%farcsec" % (primaryBeam / 2.0)
(for z=0.1 simulation we don't need mosaic (mapsize~16arcsec),
it is needed for lower redshift simulations)

move to southern hemisphere indirection= J2000 11:20:15.07 -12.59.21

Array configuration

we simulate **8 hr** observations using the different Cycle1 configurations

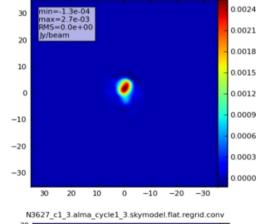
```
antennalist='cycle1_config/alma_cycle1_*.cfg'
```

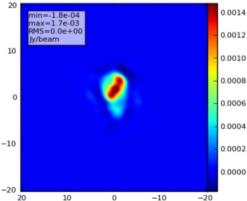

totaltime=28800s integration=100s

(a more appropriate integration time for a realistic simulation would be 10s)

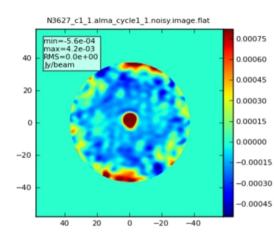
Simulations of NGC3627 at z=0.1

Gaussian beam convolved input model

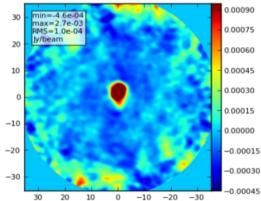

C32-2


C32-3

2.0"x 1.6"


3.0"x 2.3"

N3627_c1_2.alma_cycle1_2.skymodel.flat.regrid.conv



simulated and cleaned image

N3627_c1_2.alma_cycle1_2.noisy.image.flat

N3627_c1_3.alma_cycle1_3.noisy.image.flat

0

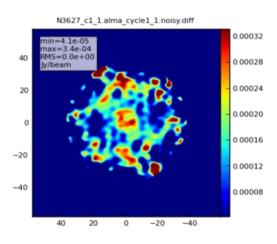
-10

0.00000

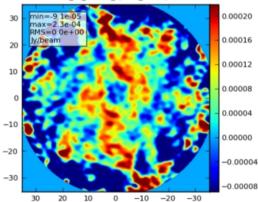
-0.00015

-0.00030

-20

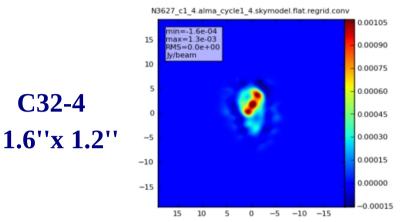

-10

-20


20

10

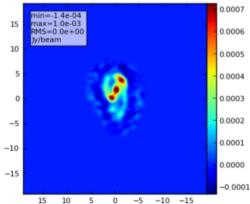
difference (conv model - iamge)


N3627_c1_2.alma_cycle1_2.noisy.diff

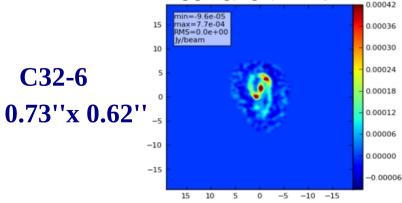
N3627 c1 3.alma cycle1 3.noisy.diff 20 0.000150 nax=1.9e-04 MS=0.0e+0lv/beam 0.000125 10 0.000100 0.000075 0 0.000050 0.000025 -100.000000 -0.000025 -0.000050 -2010 20 0 -10-20

Simulations of NGC3627 at z=0.1

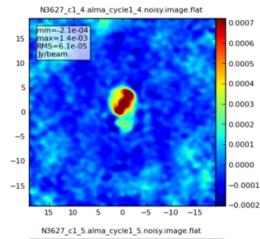
Gaussian beam convolved input model

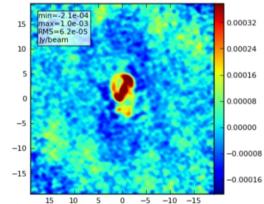

C32-4

C32-5

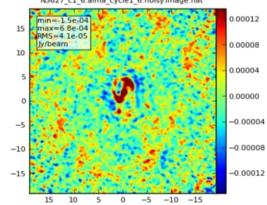

C32-6

1.1"x 0.92"

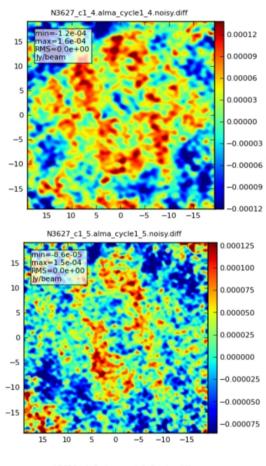

N3627_c1_5.alma_cycle1_5.skymodel.flat.regrid.conv

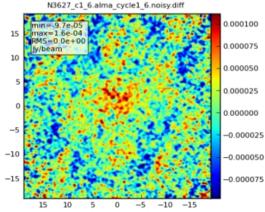


N3627 c1 6.alma cycle1 6.skymodel.flat.regrid.conv

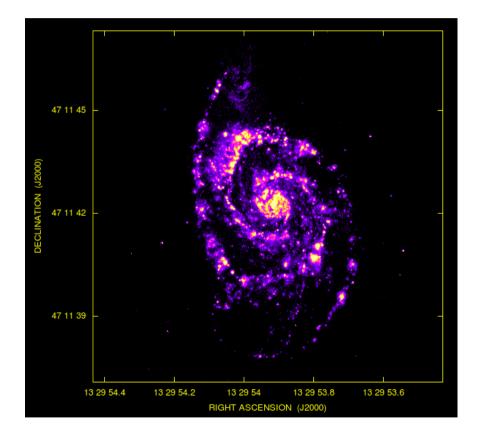


simulated and cleaned image





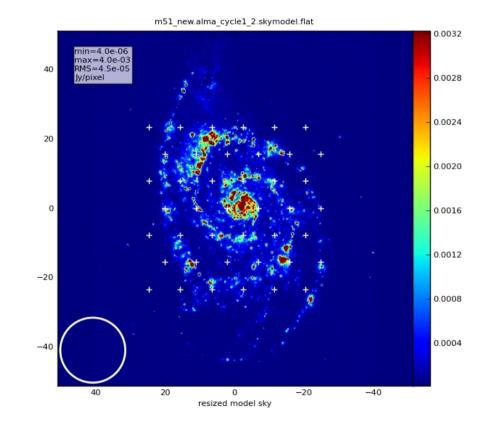
N3627 c1 6.alma cycle1 6.noisy.image.flat



difference (conv model - image)

Following: http://casaguides.nrao.edu/index.php?title=ACA_Simulation

Placing M51 in the southern hemisphere at **distance of ~ 90 Mpc** and observing it at 330 GHz with ALMA configuration C32-2 available in cycle 1

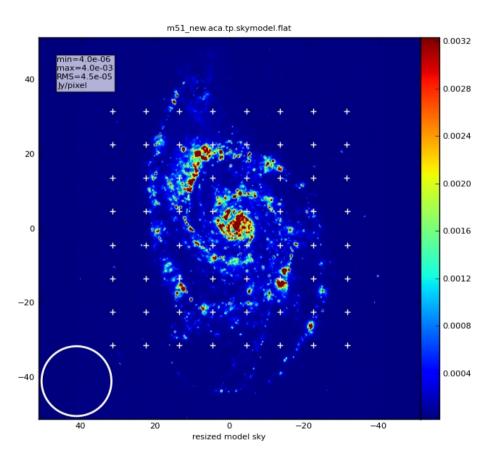

Model: $H\alpha$ image of M51

Simulation of 12 m main array observations

Map size and mosaicing

setpointing = True mapsize='1arcmin' maptype='hex' pointingspacing='9arcsec' obsmode='int' antennalist='alma.cycle1_2.cfg' totaltime='3600s'

hexagonal mosaic overplotted on the sky model

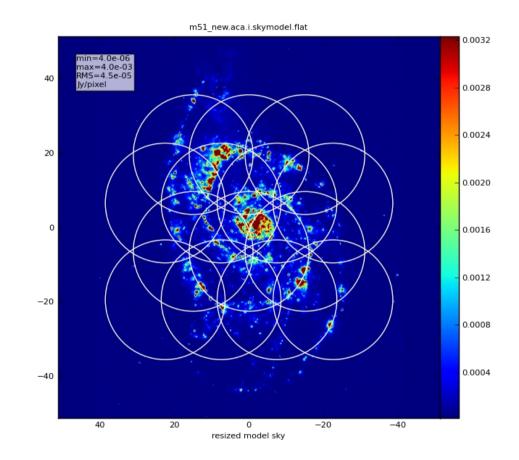

Simulation of 12m total power raster map

Map size and mosaicing

setpointing = True mapsize='1.3arcmin' maptype='square' obsmode='sd' sdantlist='aca.tp.cfg' sdant=0 refdate='2012/12/01' totaltime='2h'

sim_observe cannot simulate an actual raster map but a square mosaic and short itegration will be a good approximation

It is generally recommended to observe a larger area by ½ primary beam in tp mode to combine with 12 m array

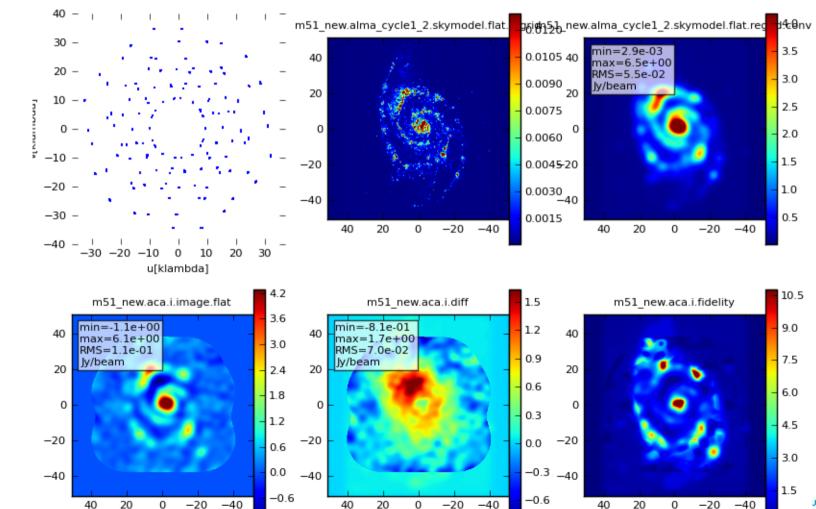

rectangular mosaic overplotted on the sky model

Simulation of ACA 7m observations

Map size and mosaicing

setpointing = True mapsize='1arcmin' maptype='hex' pointingspacing='15arcsec' **obsmode='int'** sdantlist='' refdate='2012/12/02' **totaltime='3'**

hexagonal mosaic overplotted on the sky model

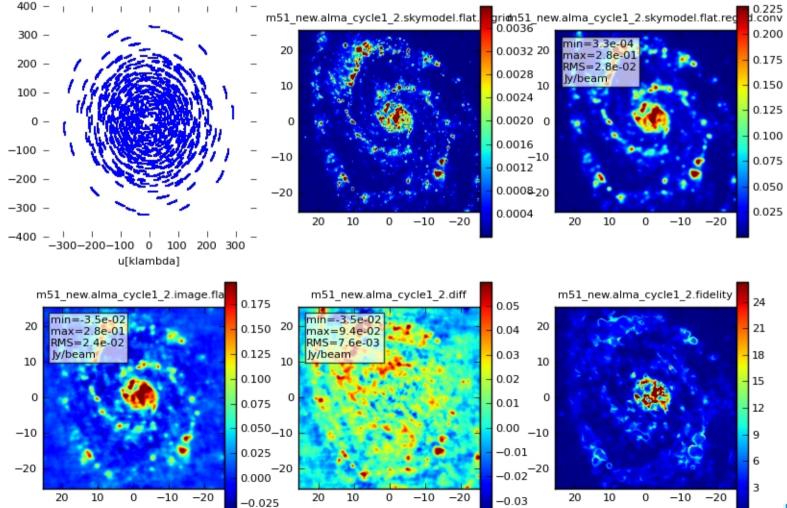


-40

One possible technique for the combination:

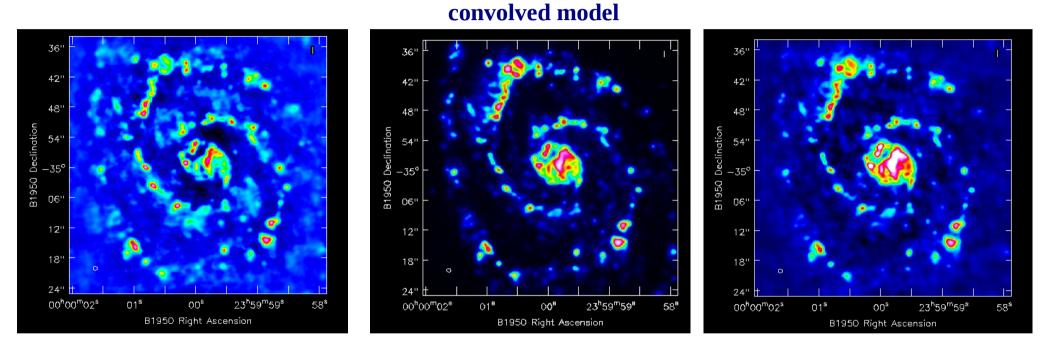
First image ACA + total power using total power as a model

default("sim_analy project vis imsize cell	= = =) "m51c" '\$project.aca.i.ms,\$project.aca.tp.sd.ms' [512,512] '0.2arcsec'
analyze showpsf showresidual showconvolved go()	= =	True False False True



JROPEAN ARC LMA Regional Centre || Italian

-40

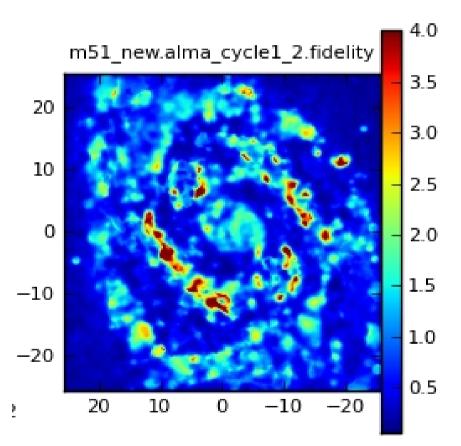

Add the 12 m interferometric data

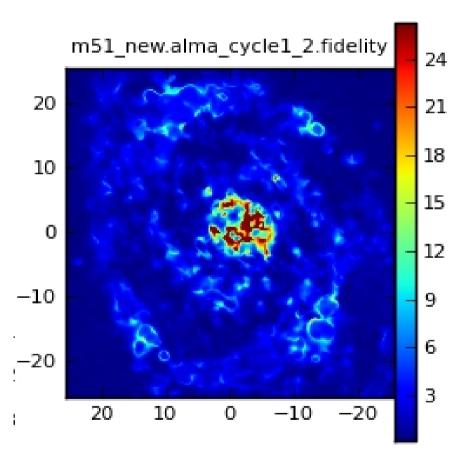
default("sim_analyze")				
project	=	"m51c"		
vis	=	'\$project.ALMA_0.5arcsec.ms'		
imsize	=	[512,512]		
cell	=	'0.1arcsec'		
modelimage	=	"\$project.aca.i.image"		
analyze	=	True		
showpsf	=	False		
showresidual	=	False		
showconvolved	=	True		
go()				

JROPEAN ARC LMA Regional Centre || Italian

Cleaned Image C32-2 without ACA

gaussian beam


The addition of ACA observations with 12 m Array observations Provides better imaging of complex sources with structures over a wide range of angular scales. The TP array measures signals on angular scales not measured by the 12 m array, while the 7 m array provides measurements on spatial scales intermediate between the two.


Cleaned image

C32+ACA

Fidelity image C32-2 without ACA

Fidelity image C32+ACA

Other possible technique for the combination can be:

using the msclean clean (again using the lower resolution image as a model when deconvolving the higher resolution one)

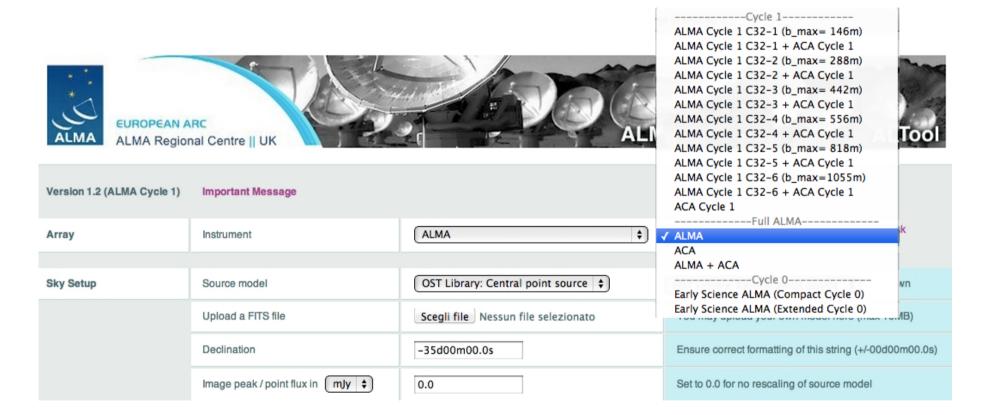
or

creating each image independently, and then using the CASA task "feather" to combine them entirely in the image plane

or

combining the uv data in a single mesaurement set

The ALMA project does NOT make any recommendation yet about the optimal technique. Detailed recommendation will be updated on the CASA guide website.


ALMA Observation Support Tool (http://almaost.jb.man.ac.uk/)

Version 1.2 (ALMA Cycle 1) Important Message Queue Status • Help • ALMA Helpdesk \$ ALMA Array Instrument **OST Latest News** OST Library: Central point source 🛊 Sky Setup Source model Choose a library source model or supply your own Upload a FITS file Scegli file Nessun file selezionato You may upload your own model here (max 10MB) Declination -35d00m00.0s Ensure correct formatting of this string (+/-00d00m00.0s) Image peak / point flux in [mJy] 0.0 Set to 0.0 for no rescaling of source model

ALMA Observation Support Tool (http://almaost.jb.man.ac.uk/)

ALMA Observation Support Tool (http://almaost.jb.man.ac.uk/)

Version 1.2 (ALMA Cycle 1) Important Message

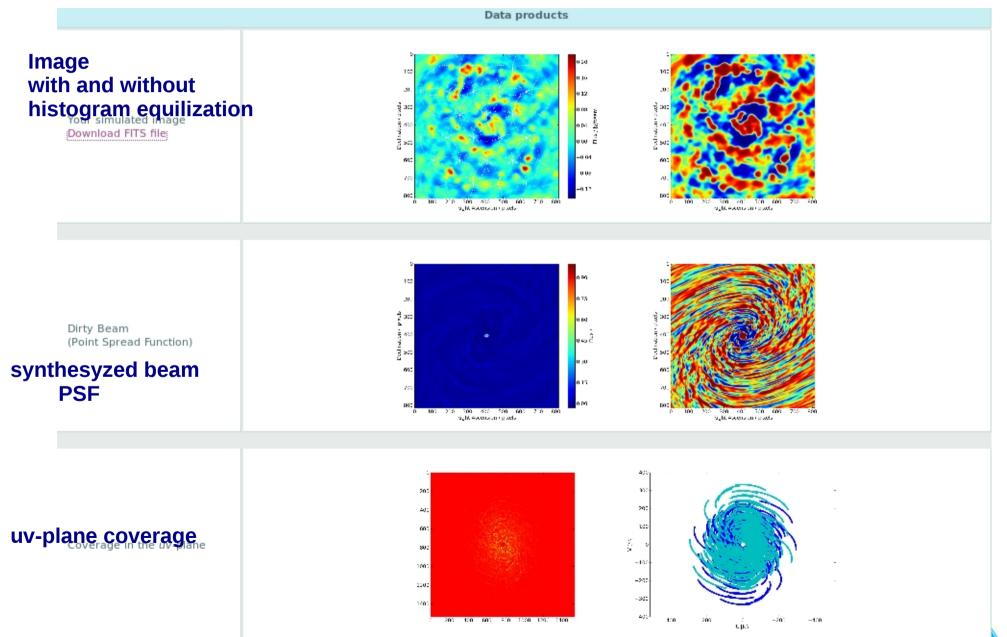
Array	Instrument	ALMA	\$	Queue Status • Help OST Lates	
Sky Setup	Source model	OST Library: Central point source 💠	✓ OST Li	led FITS image brary: Central point source	r supply your own
	Upload a FITS file	Scegli file Nessun file selezionato	OST Li	brary: NGC1333 at 8 kpc brary: Protostellar Cluster brary: Protoplanetary Disk	I here (max 10MB)
	Declination	-35d00m00.0s	OST L	brary: Nova Model brary: W49 in Leo T	string (+/-00d00m00.0s)
	Image peak / point flux in MJy 🗘	0.0		brary: Watchmen logo brary: 568ml	rce model

Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
	Bandwidth in MHz 💠	32	Use broad for continuum, narrow for single channel
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 🖨	Selecting single will apply primary beam attenuation
	Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds \$	0.0	The length of time between cutting to a phase calibrator (currently limited to either 0s or between 30s and 600s)
	On Phase Calibrator in seconds 🖨	0.0	The length of time spent observing phase calibrator (currently limited to either 0s or between 30s and 600s)
	On-source time in hours \$	3	Per pointing for Mosaics.
	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 🛊	This affects the noise in the final map
Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image
	Output image format	FITS \$	CASA format images are returned as a tar file
	Your email address is	essential!	Submit

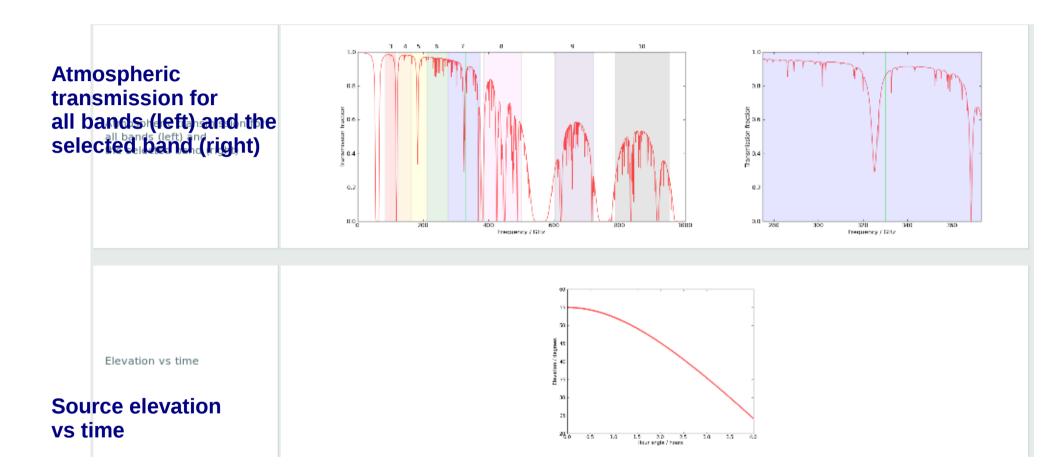
Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
	Bandwidth in MHz 💠	32	Use broad for continuum, narrow for single channel
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 🗘	Selecting single will apply primary beam attenuation
	Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds 🗧	0.0	The length of time between cutting to a phase calibrator (currently limited to either 0s or between 30s and 600s)
	On Phase Calibrator in seconds 🛊	0.0	The length of time spent observing phase calibrator (currently limited to either 0s or between 30s and 600s)
	On-source time in hours	3	Per pointing for Mosaics.
	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 🛊	This affects the noise in the final map
Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile) PWV = 0.6 PWV = 0.472 mm (1st Octile) \$	72 mm (1st Octile) 558 mm (2nd Octile) 913 mm (3rd Octile) 962 mm (4th Octile)
Imaging	Imaging weights	Notural A	796 mm (5th Octile) 748 mm (6th Octile) / sensitivity trade-off
	Perform deconvolution?	No (Return dirty image)	.86 mm (7th Octile)
	Output image format	FITS 🗘	CASA format images are returned as a tar file
	Your email address is	essential!	Submit

Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
	Bandwidth in MHz 💠	32	Use broad for continuum, narrow for single channel
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 🖨	Selecting single will apply primary beam attenuation
	Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds \$	0.0	The length of time between cutting to a phase calibrator (currently limited to either 0s or between 30s and 600s)
	On Phase Calibrator in seconds +	0.0	The length of time spent observing phase calibrator (currently limited to either 0s or between 30s and 600s)
	On-source time in hours	3	Per pointing for Mosaics.
	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 🛊	This affects the noise in the final map
Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image
	Output image format	FITS 🛊	CASA format images are returned as a tar file
	Your email address is	essential!	Submit

Your email address is essential!


You will be notified via email when the simulation is complete.

Result overview


Overview	
Click thumbnails to view full-size images. Left: linear colour scale, right: with histogram equalization.	
Array configuration	ALMA Cycle 1 C32-2 (288 m baseline)
Source model	prova_modello.fits
Maximum elevation	55.0 degrees
Central frequency	330 GHz = Band 7
Bandwidth	0.005 GHz
Track length	4 hours × 1.0 visits
Hexagonal mosaic pointings	27 required to cover requested sky area with uniform sensitivity
System temperature	Tsys = 145.125414615 K
PWV	0.475 mm
Theoretical RMS noise	0.000505694876414 Jy (in naturally-weighted map)
Restoring beam (resolution)	Major axis = 0.97 arcsec, minor axis = 0.735 arcsec, PA = 92.308 deg

Data products

Data products

In summary

Simulations can provide informative results on the feasibility of proposed observations.

- They can provide information on the fraction of the flux that is resolved out by a given configuration.
- The fidelity images produced, if relevant, can be specified in the technical justification

• If a high dynamic range is required in order to achieve the science goals, simulations can establish whether the observations is feasible.

BUT

Significant differences exist sometimes between the noise predicted by the ALMA sensitivity calculator and the measured RMS in the simulated images. Simulations should only be used to **qualitatively** assess the sensitivity.

Proposed observing times and expected sensitivity should be based on the sensitivity calculator.

