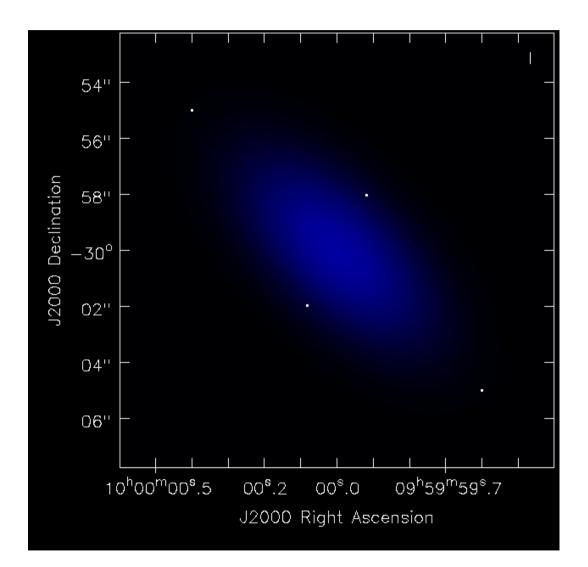
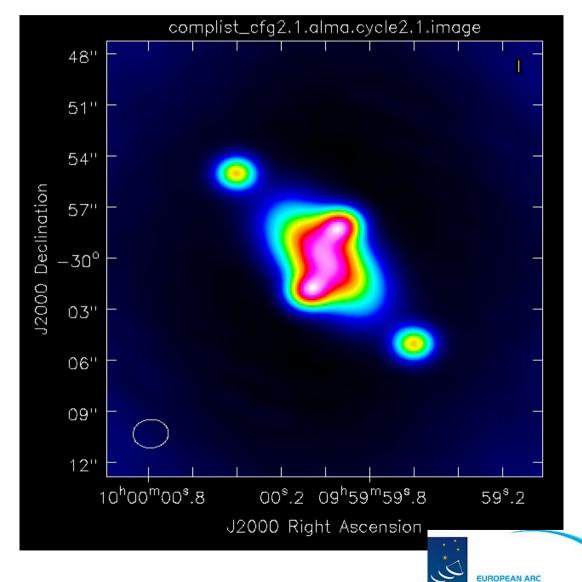
ALMA simulations **Rosita Paladino** & the Italian ARC



Interferometers do not sample all spatial frequencies on the sky, so the image obtained from interferometric observations does not necessarily represent the full brightness distribution.

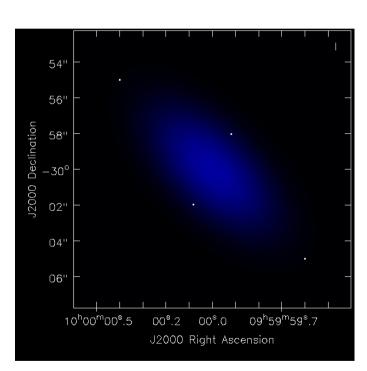
Simulations of ALMA observations are **not required** for a proposal, but they can strengthen it in some cases. They can demonstrate the need for specific configurations, or combinations of configurations, to resolve certain structures or meet specific goals.

If they are discussed to justify any technical aspects of the observation their results should be included in the science case and in the technical justification.

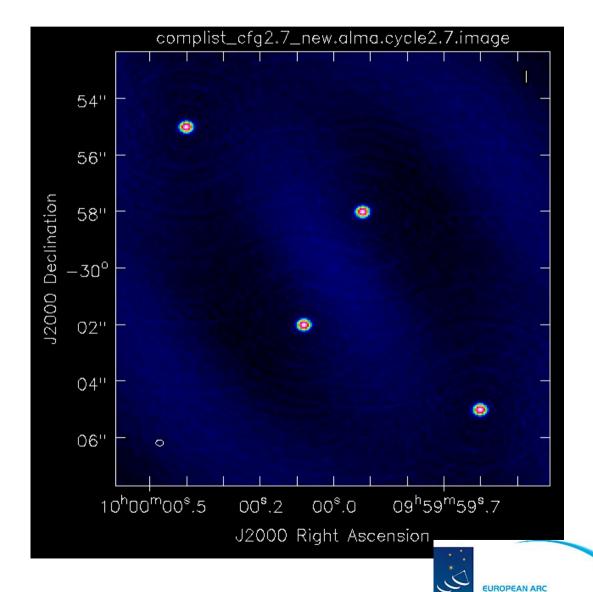

Assume this is our target field:

4 point sources

1 central gaussian

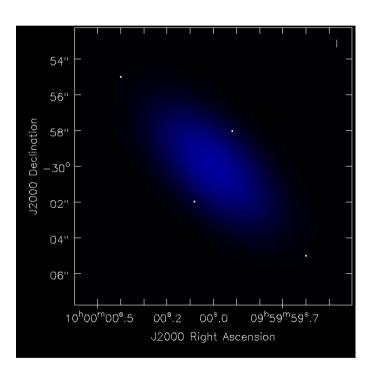


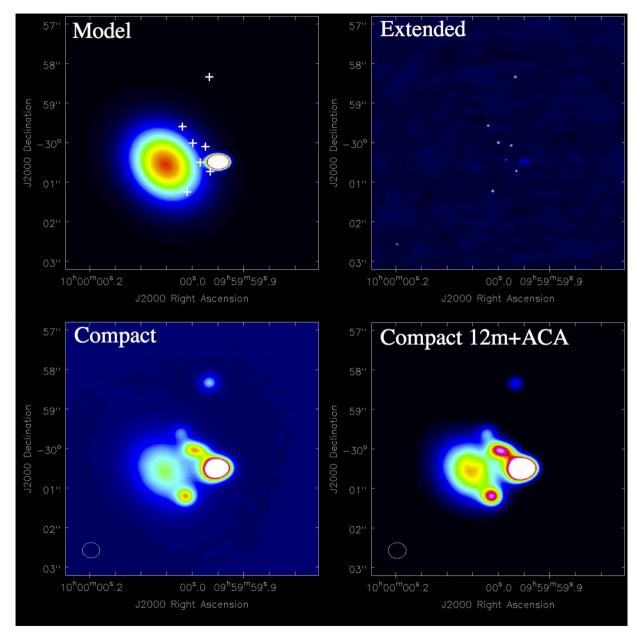
ALMA Cycle2.1 cfg **most compact** 8hrs observations 1 pointing



ALMA

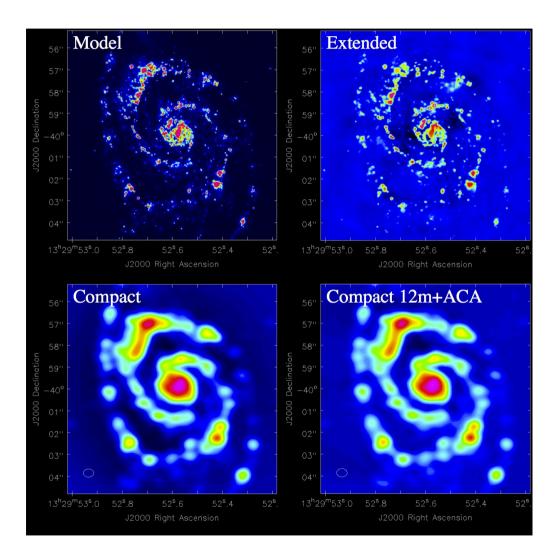
ALMA Regional Centre || Italian




ALMA Cycle2.7 cfg **most extended** 8hrs observations 1 pointing

ALMA

ALMA Regional Centre || Italian



A more complex model: many point sources and many gaussians

The extended configuration misses completely the emission from the largest gaussian component. The compact cfg recovers the extended emission. Adding ACA gives a more precise representation of the flux.

To recover both extended and point sources the combination of multiple 12 m array cfg and ACA are needed.

Simulation of a M51-like galaxy

The extended configuration reproduces well the model since most of the emission is on small angular scale.

The compact array gives the information on larger scales, and adding ACA the short spacings are recovered and the flux density recorded is closer to the model one.

The extended configurations cannot be combined directly with ACA because the large difference in uv-coverage would produce negative holes in the final image

ALMA configurations available during Cycle 2

	Band	3	4	6	7	8	9
	Frequency (GHz)	100	150	230	345	460.	650
Configuration							
7-m	θ_{res} (arcsec)	19.26	12.84	8.38	5.58	4.19	2.96
	θ_{MRS} (arcsec)	41.7	27.8	18.1	12.1	9.1	6.4
7-m-NS	θ_{res} (arcsec)	18.80	12.53	8.17	5.45	4.09	2.89
	θ_{MRS} (arcsec)	44.2	29.4	19.2	12.8	9.6	6.8
C34-1	θ_{res} (arcsec)	3.73	2.49	1.62	1.08	0.81	0.57
	θ_{MRS} (arcsec)	26.1	17.4	11.4	7.6	5.7	4.0
C34-2	θ_{res} (arcsec)	2.04	1.36	0.89	0.59	0.44	0.31
	θ_{MRS} (arcsec)	26.3	17.5	11.4	7.6	5.7	4.0
C34-3	θ_{res} (arcsec)	1.40	0.93	0.61	0.40	0.30	0.21
	θ_{MRS} (arcsec)	18.0	12.0	7.8	5.2	3.9	2.8
C34-4	θ_{res} (arcsec)	1.11	0.74	0.48	0.32	0.24	0.17
	θ_{MRS} (arcsec)	18.0	12.0	7.8	5.2	3.9	2.8
C34-5	θ_{res} (arcsec)	0.75	0.50	0.33	0.22	0.16	0.12
	θ_{MRS} (arcsec)	14.4	9.6	6.3	4.2	3.1	2.2
C34-6	θ_{res} (arcsec)	0.57	0.38	0.25	0.16	0.12	0.09
	θ_{MRS} (arcsec)	9.1	6.1	4.0	2.6	2.0	1.4
C34-7	θ_{res} (arcsec)	0.41	0.27	0.18	0.12	-	-
	θ_{MRS} (arcsec)	9.1	6.1	4.0	2.6	-	-

Desired angular resolution

η[$\theta_{}$ (arcsec)	θ_{MRS} (arcsec)	Array combinations for a specified $\{\theta_{res}, \theta_{MRS}\}$	Time ratios	Total Time
	0.41-0.57	< 9.1	C34-7	1	$1.0 \times \Delta_{extended}$
	0.41-0.57	9.1-18.0	C34-7 + C34-3	1: 0.5	$1.5 \times \Delta_{extended}$
	0.41 - 0.57	18.0-41.7	C34-7 + C34-3 + 7-m	1: 0.5: 2	$3.5 \times \Delta_{extended}$
	0.41 - 0.57	> 41.7	C34-7 + C34-3 + 7-m + TP		
- F		0.4	Classic	-	10 1

Desired angular resolution

Largest angular structure

θ	(arcsec)	θ_{MRS} (arcsec)	Array combinations for a specified $\{\theta_{res}, \theta_{MRS}\}$	Time ratios	Total Time
0.41	-0.57	< 9.1	C34-7	1	$1.0 \times \Delta_{extended}$
0.41	-0.57	9.1-18.0	C34-7 + C34-3	1: 0.5	$1.5 \times \Delta_{extended}$
0.41	-0.57	18.0-41.7	C34-7 + C34-3 + 7-m	1: 0.5: 2	$3.5 \times \Delta_{extended}$
0.41	-0.57	> 41.7	C34-7 + C34-3 + 7-m + TP	1: 0.5: 2: 4	$5.5 \times \Delta_{extended}$
0 KE		0.4	Cara		10 1

Desired angular resolution

Largest angular structure

$\theta_{}$ (arcsec)	θ_{MRS} (arcsec)	Array combinations for a specified $\{\theta_{res}, \theta_{MRS}\}$	Time ratios	Total Time
0.41-0.57	< 9.1	C34-7	1	$1.0 \times \Delta_{extended}$
0.41-0.57	9.1-18.0	C34-7 + C34-3	1: 0.5	$1.5 \times \Delta_{extended}$
0.41 - 0.57	18.0-41.7	C34-7 + C34-3 + 7-m	1: 0.5: 2	$3.5 \times \Delta_{extended}$
0.41 - 0.57	> 41.7	C34-7 + C34-3 + 7-m + TP	1: 0.5: 2: 4	$5.5 \times \Delta_{extended}$
	0.4	Classe		40.4

The most extended configuration is enough!

Desired angular resolution

Largest angular structure

θ_{res} (arcsec)	θ_{MRS} (arcsec)	Array combinations for a specified $\{\theta_{res}, \theta_{MRS}\}$	Time ratios	Total Time
0.41-0.57	< 0.1	C34-7	1	$1.0 \times \Delta_{extended}$
0.41-0.57	9.1-18.0	C34-7 + C34-3	1: 0.5	$1.5 \times \Delta_{extended}$
0.41 - 0.57	18.0-41.7	C34-7 + C34-3 + 7-m	1: 0.5: 2	$3.5 \times \Delta_{extended}$
0.41 - 0.57	> 41.7	C34-7 + C34-3 + 7-m + TP	1: 0.5: 2: 4	$5.5 \times \Delta_{extended}$

2 main array configurations are needed!

Desired angular resolution

Largest angular structure

θ_{res} (arcsec)	θ_{MRS} (arcsec)	Array combinations for a specified $\{\theta_{res}, \theta_{MRS}\}$	Time ratios	Total Time
0.41-0.57	< 0.1	C34-7	1	$1.0 \times \Delta_{extended}$
0.41-0.57	9.1-18.0	C34-7 + C34-3	1: 0.5	$1.5 \times \Delta_{extended}$
0.41-0.57	18.0-41.7	C34-7 + C34-3 + 7-m	1: 0.5: 2	$3.5 imes \Delta_{extended}$
0.41 - 0.57	> 41.7	C34-7 + C34-3 + 7-m + TP	1: 0.5: 2: 4	$5.5 \times \Delta_{extended}$
	0 d	Classe	-	10 1

2 main array configurations are needed!

Time scaling assumed for the observations

Desired angular resolution

Largest angular structure

θ_{res} (arcsec)	θ_{MRS} (arcsec)	Array combinations for a specified $\{\theta_{res}, \theta_{MRS}\}$	Time ratios	Total Time
0.41-0.57	< 9.1	C34-7	1	$1.0 \times \Delta_{extended}$
0.41-0.57	9118.0	C34-7 + C34-3	1: 0.5	$1.5 \times \Lambda_{extended}$
0.41-0.57	18.0-41.7	C34-7 + C34-3 + 7-m	1: 0.5: 2	$3.5 imes \Delta_{extended}$
0.41 - 0.57	> 41.7	C34-7 + C34-3 + 7-m + TP	1: 0.5: 2: 4	$5.5 \times \Delta_{extended}$
	0.4	Clour a	-	4 0 4

2 main array configurations + ACA are needed!

Time scaling assumed for the observations

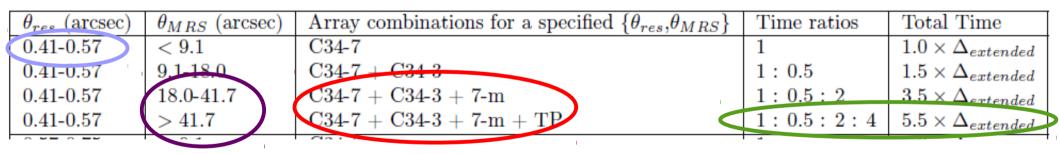
Desired angular resolution

Largest angular structure

θ_{res} (arcsec)	θ_{MRS} (arcsec)	Array combinations for a specified $\{\theta_{res}, \theta_{MRS}\}$	Time ratios	Total Time
0.41-0.57	< 9.1	C34-7	1	$1.0 \times \Delta_{extended}$
0.41-0.57	9118.0	C34-7 + C34-3	1: 0.5	$1.5 \times \Lambda_{extended}$
0.41-0.57	18.0-41.7	C34-7 + C34-3 + 7-m	1: 0.5: 2	$3.5 imes \Delta_{extended}$
0.41 - 0.57	> 41.7	C34-7 + C34-3 + 7-m + TP	1: 0.5: 2: 4	$5.5 \times \Delta_{extended}$
	0.4	Clour a	-	4 0 4

2 main array configurations + ACA are needed!

Time scaling assumed for the observations


In spectral line mode (in band 3 to 8) the Total Power array is also available.

The OT, when the use of ACA is needed assumes that TP is also needed and gives an increased estimate of the observing time.

If you don't need TP you have to explicitly say so!

Desired angular resolution

Largest angular structure

The OT assumes you need TP in both cases!

Time scaling assumed for the observations

Two software tools available to help users simulate images resulting from an ALMA observations:

Simulations with CASA tasks simobserve & simanalyze (suggested CASA 4.2) Tasks to produce ALMA data from an input sky model (theoretical model or previous observations)

Observation Support Tool

The OST is a webtool hosted by the UK ARC with a website acting as a simple GUI to set parameters and run the simulations

Simulations with CASA

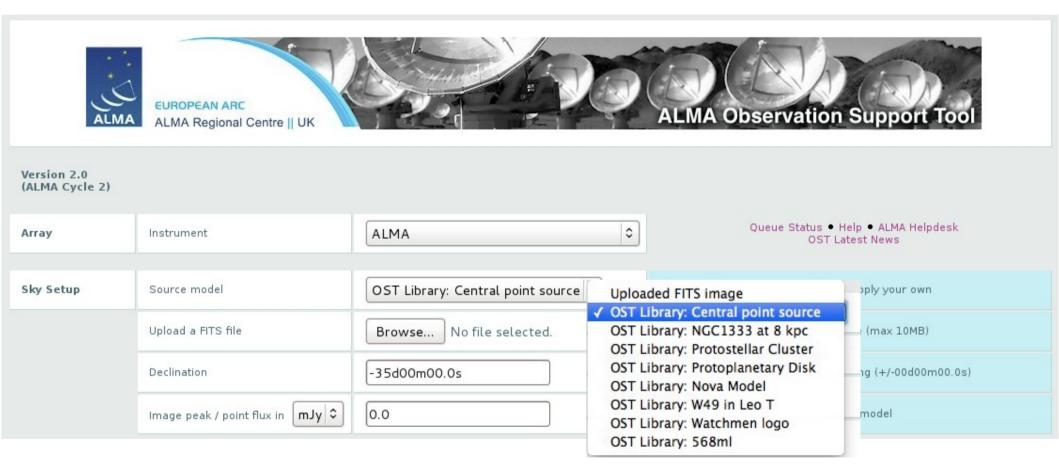
- Allow you to simulate observations starting from images or component list.
- You can scale the spatial axes and the flux of your model to shift the data to what would be observed for a similar target at a different distance.
- You can combine observations taken with different configuration and with the ACA
- New simple task **simalma**
- If you need CASA simulations we can help you running CASA scripts during this afternoon session or some other time.

ALMA Observation Support Tool (http://almaost.jb.man.ac.uk/)

Version 2.0 (ALMA Cycle 2)

Array	Instrument	Alma	Queue Status • Help • ALMA Helpdesk OST Latest News
Sky Setup	Source model	OST Library: Central point source 🗘	Choose a library source model or supply your own
	Upload a FITS file	Browse No file selected.	You may upload your own model here (max 10MB)
	Declination	-35d00m00.0s	Ensure correct formatting of this string (+/-00d00m00.0s)
	Image peak / point flux in mJy 🗘	0.0	Set to 0.0 for no rescaling of source model

Array selection



Version 2.0 (ALMA Cycle 2)

Array	Instrument	ALMA	0	Queue Status • Help • ALMA Helpdesk OST Latest News
		Full ALMA		
Sky Setup	Source model	ALMA		Choose a library source model or supply your own
		ACA		
	Upload a FITS file	ALMA + ACA		You may upload your own model here (max 10MB)
	opioud a rito nic	Cycle2		Tou may apload your own model here (max 1040)
	Declination	ALMA Cycle 2 C34-1 (b_max= 166m)	≡	Ensure correct formatting of this string (+/-00d00m00.0s)
	Decimation	ALMA Cycle 2 C34-1 + ACA Cycle 2		Ensure confect formatting of this string (+7-000000000.03)
		ALMA Cycle 2 C34-2 (b_max= 304m)		Set to 0.0 for no rescaling of source model
	Image peak / point flux in mJy 🗘	ALMA Cycle 2 C34-2 + ACA Cycle 2		Set to 0.0 for his restaining of source model
		ALMA Cycle 2 C34-3 (b_max= 443m)		
		ALMA Cycle 2 C34-3 + ACA Cycle 2		
		ALMA Cycle 2 C34-4 (b_max= 558m)		
		ALMA Cycle 2 C34-4 + ACA Cycle 2		
		ALMA Cycle 2 C34-5 (b_max= 820m)		
		ALMA Cycle 2 C34-5 + ACA Cycle 2		
		ALMA Cycle 2 C34-6 (b_max= 1091m)		
		ALMA Cycle 2 C34-6 + ACA Cycle 2		
		ALMA Cycle 2 C34-7 (b_max= 1508m)		
		ALMA Cycle 2 C34-7 + ACA Cycle 2		EUROPEAN ARC
		ACA Cycle 2: 7m (Standard)	~	ALMA ALMA Regional Centre Italian

Source model

Source model

Version 2.0 (ALMA Cycle 2)

Array	Instrument	ALMA	Queue Status • Help • ALMA Helpdesk OST Latest News
Sky Setup	Source model	OST Library: Central point source 🗘	Choose a library source model or supply your own
	Upload a FITS file	Browse No file selected.	You may upload your own model here (max 10MB)
	Declination	-35d00m00.0s	Ensure correct formatting of this string (+/-00d00m00.0s)
	Image peak / point flux in mJy 🗘	0.0	Set to 0.0 for no rescaling of source model

The original image I_{xy} will be scaled according to (M is the original maximum value of the image) 0 means no scaling

$$I'_{xy} = \frac{I_{xy} P}{M}$$

If point source model is chosen this sets the flux of the source

Observation Setup Central frequency in GHz 90 The value entered must be within an ALMA band Bandwidth in MHz © 32 Use broad for continuum, narrow for single channel Use recommanize continue Image: Setup? Image: Setup? Image: Setup? Required resolution in arcseconds 1.0 OST will choose config if instrument is set to ALMA Pointing strategy Mosaic © Selecting single will apply primary beam attenuation Start hour angle 0.0 Deviation of start of observation from transit On Phase Cycle in seconds © 0.0 The length of time between cutting to a phase calibrator: On-source time in hours © 3 Per pointing for Mosaics. Number of visits 1 Hour angle Hour angle On-source time in hours © 3 Per pointing for Mosaics. Number of visits 1 Hour angle Hour angle	1				
Use recommended continuum Image: Sector in the sector		Central frequency in GHz	90	The value entered must be within an ALMA band	
setup? Image: Setup? Setup? Required resolution in arcseconds 1.0 OST will choose config if instrument is set to ALMA Pointing strategy Image:		Bandwidth in MHz 🗘	32	Use broad for continuum, narrow for single channel	
Pointing strategyMosaic Selecting single will apply primary beam attenuationStart hour angle0.0Deviation of start of observation from transitPhase Cycle in seconds 0.0The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s.On Phase Calibrator in seconds < <td>0.00.0On source time in hours 3Per pointing for Mosaics.Number of visits1How many times the observation is repeated</td> <th></th> <td></td> <td>● No ○ Yes</td> <td></td>	0.00.0On source time in hours 3Per pointing for Mosaics.Number of visits1How many times the observation is repeated			● No ○ Yes	
Start hour angle 0.0 Deviation of start of observation from transit Phase Cycle in seconds <> 0.0 The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s. On Phase Calibrator in seconds <> 0.0 The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s. On-source time in hours <> 3 Per pointing for Mosaics. Number of visits 1 How many times the observation is repeated		Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA	
Phase Cycle in seconds 0.0 The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s. On Phase Calibrator in seconds 0.0 The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s. On-source time in hours 3 Per pointing for Mosaics. Number of visits 1 How many times the observation is repeated		Pointing strategy	Mosaic 2	Selecting single will apply primary beam attenuation	
Phase Cycle in Seconds 0.0 Currently limited to either 0s or between 300s and 600s. On Phase Calibrator in seconds 0.0 The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s. On-source time in hours 3 Per pointing for Mosaics. Number of visits 1 How many times the observation is repeated		Start hour angle	0.0	Deviation of start of observation from transit	
seconds 0.0 Interest of the spent observing phase called interdating stewing time). Currently limited to either 0s or between 30s and 120s. On-source time in hours 3 Per pointing for Mosaics. Number of visits 1 How many times the observation is repeated		Phase Cycle in seconds 🗘	0.0	The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s.	
Number of visits 1 How many times the observation is repeated			0.0	time).	
		On-source time in hours 🗘	3	Per pointing for Mosaics.	
Number of polarizations This affects the noise in the final map		Number of visits	1	How many times the observation is repeated	
		Number of polarizations	2 2	This affects the noise in the final map	

Central frequency within the range of available ALMA bands. Bandwidth of observations: Narrow for lines, broad for continuum

Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
1	Bandwidth in MHz 🗢	32	Use broad for continuum, narrow for single channel
	Use recommended continuum setup?	◎ No O Yes	If Bandwidth = 7.5GHz use the ALMA recommended spectral window spacing for continuum simulations.
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 🗘	Selecting single will apply primary beam attenuation
	Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds 🗘	0.0	The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s.
	On Phase Calibrator in seconds 🗘	0.0	The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s.
	On-source time in hours	3	Per pointing for Mosaics.
	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 \$	This affects the noise in the final map
	Number of polarizations		This affects the hoise in the final map

Use recommended continuum setup? YES (only if bandwidth is 7.5GHz): it will use ALMA recommended spw for continuum observations

Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
	Bandwidth in MHz 🗘	32	Use broad for continuum, narrow for single channel
	Use recommended continuum setup?	● No ○ Yes	If Bandwidth = 7.5GHz use the ALMA recommended spectral window spacing for continuum simulations.
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 😂	Selecting single will apply primary beam attenuation
	Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds 🗢	0.0	The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s.
	On Phase Calibrator in seconds 🗘	0.0	The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s.
	On-source time in hours	3	Per pointing for Mosaics.
	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 2	This affects the noise in the final map

Required resolution **Not needed if you select a specific Cycle 2 configuration** If you select ALMA in the array selection, the OST will select the appropriate configuration given the frequency requirement.

Observation Setup Central frequency in GHz 90	ed must be within an ALMA band
Bandwidth in MHz 🗢 32 Use broad for c	ontinuum, narrow for single channel
	7.5GHz use the ALMA recommended spectral window tinuum simulations.
Required resolution in arcseconds 1.0 OST will choose	e config if instrument is set to ALMA
Pointing strategy Mosaic 🗘 Selecting single	will apply primary beam attenuation
Start hour angle 0.0 Deviation of sta	rt of observation from transit
Phase Cycle in seconds Contraction O.O The length of the Currently limited	me between cutting to a phase calibrator. d to either 0s or between 300s and 600s.
cocondo a los de la constancia de la const	me spent observing phase calibrator (including slewing d to either 0s or between 30s and 120s.
On-source time in hours 3 Per pointing for	Mosaics.
Number of visits 1 How many time	s the observation is repeated
Number of polarizations 23	noise in the final map

Pointing strategy Single pointing or Mosaic: it will examine the sky area which is to be simulated and return the number of pointings needed to cover the entire field

Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
	Bandwidth in MHz 🗘	32	Use broad for continuum, narrow for single channel
	Use recommended continuum setup?	● No ○ Yes	If Bandwidth = 7.5GHz use the ALMA recommended spectral window spacing for continuum simulations.
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 🗢	Selecting single will apply primary beam attenuation
(Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds ᅌ	0.0	The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s.
	On Phase Calibrator in seconds 🗘	0.0	The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s.
C	On-source time in hours 🗘	3	Per pointing for Mosaics.
	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 0	This affects the noise in the final map

Start hour angle

this value indicates the time before/after the transit the observation starts. ex. -1.5 with time on source 3 hrs means the source transits in the middle of the observation.

Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
	Bandwidth in MHz 🗢	32	Use broad for continuum, narrow for single channel
	Use recommended continuum setup?	● No O Yes	If Bandwidth = 7.5GHz use the ALMA recommended spectral window spacing for continuum simulations.
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 🗘	Selecting single will apply primary beam attenuation
	Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds 🗘	0.0	The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s.
	On Phase Calibrator in seconds 🗘	0.0	The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s.
	On-source time in hours 🗘	3	Per pointing for Mosaics.
	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 0	This affects the noise in the final map

Phase cycle

between 300 and 600 s. Indicates the on source time between cuts of hypothetical phase calibrator.

On phase calibrator time spent on the hypothetical phase calibrator after each on source cut.

Observation Setup	Central frequency in GHz	90	The value entered must be within an ALMA band
	Bandwidth in MHz 🗢	32	Use broad for continuum, narrow for single channel
	Use recommended continuum setup?	● No ○ Yes	If Bandwidth = 7.5GHz use the ALMA recommended spectral window spacing for continuum simulations.
	Required resolution in arcseconds	1.0	OST will choose config if instrument is set to ALMA
	Pointing strategy	Mosaic 🗘	Selecting single will apply primary beam attenuation
	Start hour angle	0.0	Deviation of start of observation from transit
	Phase Cycle in seconds 🗘	0.0	The length of time between cutting to a phase calibrator. Currently limited to either 0s or between 300s and 600s.
	On Phase Calibrator in seconds 🗘	0.0	The length of time spent observing phase calibrator (including slewing time). Currently limited to either 0s or between 30s and 120s.
1	On-source time in hours	3	Per pointing for Mosaics.
<	Number of visits	1	How many times the observation is repeated
	Number of polarizations	2 3	This affects the noise in the final map

Number of visits

If the observation is longer than 24 hours, or occupies a limited range of hour angles is needed. ex. only hour angle +/- 1 is acceptable but 20 hours on source are needed: start hour angle must be set to -1, time on source to 2, and number of visit to 10

Corruption and imaging

Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image
	Output image format	FITS 2	CASA format images are returned as a tar file
	Your email address is	essential!	Submit

Corruption

Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	✓ PWV = 0.472 mm (1st Octile)	spour
			PWV = 0.658 mm (2nd Octile)	
Imaging	Imaging weights	Natural 🗢	PWV = 0.913 mm (3rd Octile)	:-off
			PWV = 1.262 mm (4th Octile)	
	Perform deconvolution?	No (Return dirty image) 🗘	PWV = 1.796 mm (5th Octile)	the image
	Output image format	FITS \$	PWV = 2.748 mm (6th Octile) PWV = 5.186 mm (7th Octile)	ır file
				2
	Your email address is	essential!	Submi	t

Add noise to the simulated observations due to water vapor in different weather conditions

Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image
	Output image format	FITS 🗘	CASA format images are returned as a tar file
	Your email address is	essential!	Submit

Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 👔	This allows a resolution / sensitivity trade-off
	Perform deconvolution?	Uniform _image) >	Apply the CLEAN algorithm to deconvolve the image
	Output image format	Natural G Briggs	CASA format images are returned as a tar file
		ELTE A	
	Your email address is	essential!	Submit

Weighting

Natural: visibilities are weighted according to the number of measurements within a given region of the u-v plane. Maximum sensitivity but lower resolution than that offered. Uniform: applies equal weighting to all visibilities. Maximum resolution. Briggs: intermediate approach.

Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image
	Output image format	FITS 2	CASA format images are returned as a tar file
	Your email address is	essential!	Submit

Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off
	Output image format No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image	
		CASA format images are returned as a tar file	
		Yes	
	Your email address is	essential!	Submit

Deconvolution

If required the OST performs it using the CLEAN algorithm.

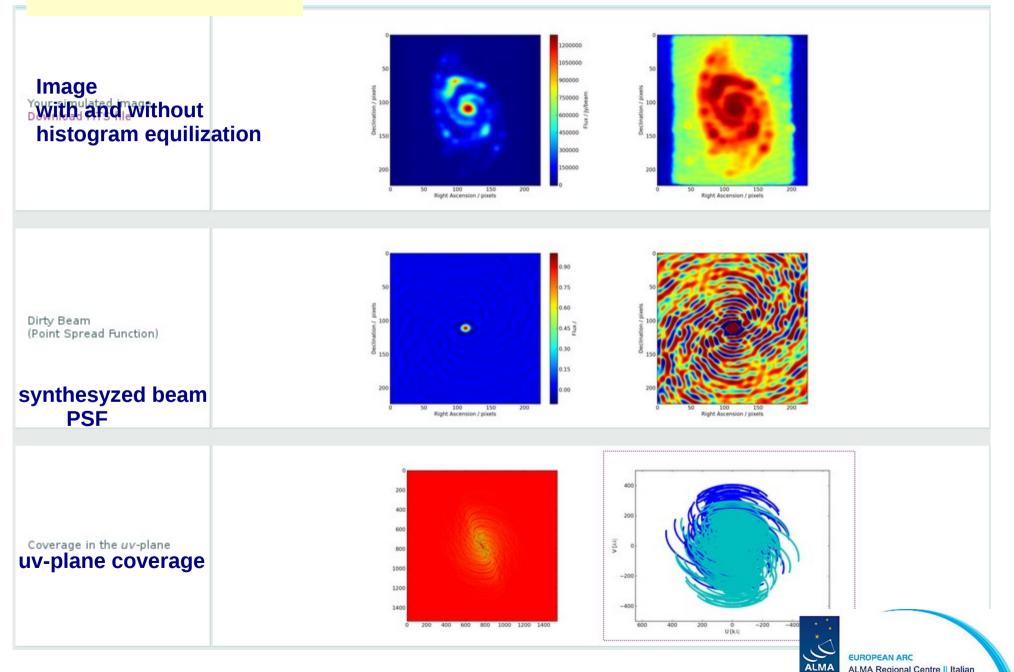
The CLEAN cycle stops when the theoretical noise limit in the map is reached.

Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image
	Output image format	FITS	CASA format images are returned as a tar file
	Your email address is	CASA	Submit
		IESSETTIAL ²	

email

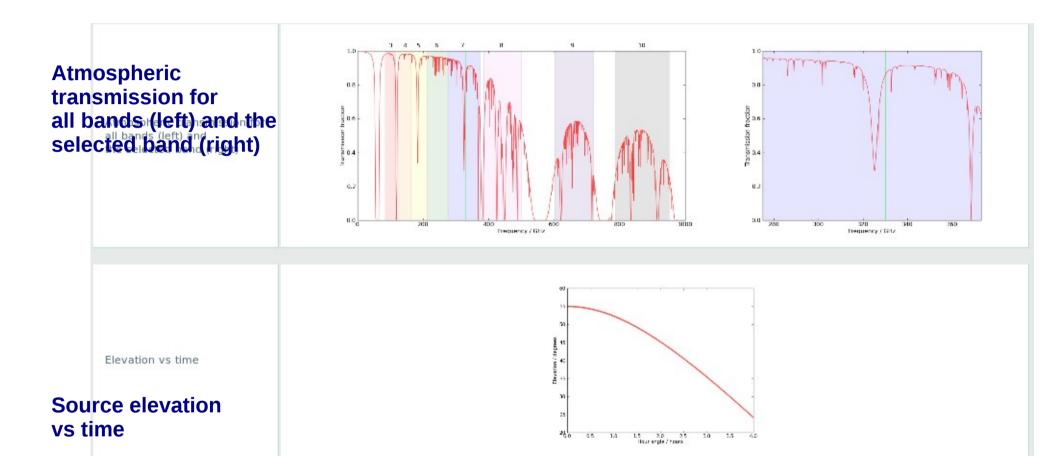
Corruption	Atmospheric conditions	PWV = 0.472 mm (1st Octile)	Determines level of noise due to water vapour					
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivity trade-off					
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deconvolve the image					
	Output image format	FITS 🗘	CASA format images are returned as a tar file					
	Your email address is	essential!	Submit					
Your email address is essential!								

You will be notified via email when the simulation is complete.



Results overview

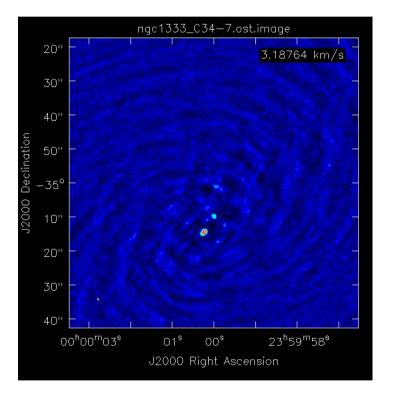
	Overview				
	Click thumbnails to view full-size images. Left: linear colour scale, right: with histogram equalization.				
Array configuration	ALMA Cycle 2 C34-7 (1508 m baseline)				
Source model	M51 originally observed in H_alpha				
	1000 900 900 900 900 900 900 900				
Maximum elevation	77.89 degrees				
Central frequency	90 GHz = Band 3				
Bandwidth	0.0074999999999 GHz				
Track length	8 hours × 1.0 visits				
Hexagonal mosaic pointings	1 required to cover requested sky area with uniform sensitivity				
System temperature	Tsys = 67.5701719499 K				
PWV	0.475 mm				
Theoretical RMS noise	0.000126651276648 Jy (in naturally-weighted map)				
Restoring beam (resolution)	Major axis = 0.474 arcsec, minor axis = 0.376 arcsec, PA = 93.255 deg				



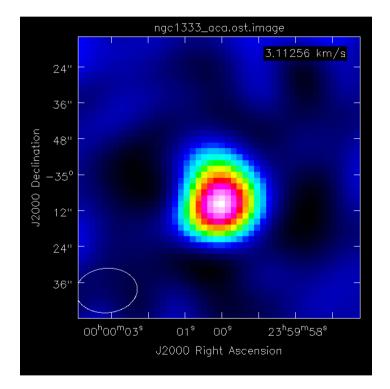
Data products

ALMA Regional Centre || Italian

Data products



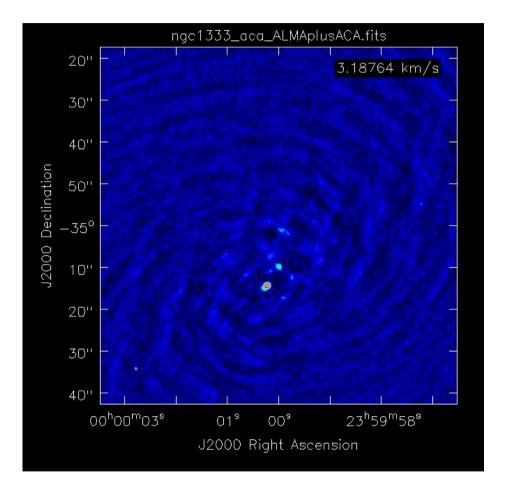
Data combination


You can simulate observations taken with one 12 m array configuration and the ACA selecting it from the array selector.

NGC1333 model from the OST template

ALMA C34-7

ALMA ACA


You get two different simulated datasets. The OST provides a python script to combine them. You have to run it in CASA:

CASA> execfile('ost_combine.py')

Data combination

ALMA C34-7 + ACA

In this case the combination does not show a clear improvement in the image because we are combining a very extended configuration with the ACA.

In summary

Simulations can provide informative results on the feasibility of proposed observations. They can provide information on the fraction of the flux that is resolved out by a given configuration.

BUT

Significant differences exist sometimes between the noise predicted by the ALMA sensitivity calculator and the measured RMS in the simulated images. **Simulations should only be used to qualitatively assess the sensitivity.**

Expected sensitivity (proposed observing time) should only be based on the sensitivity calculator.

ALMA sensitivity calculator http://almascience.eso.org/proposing/sensitivity-calculator

Common Paramete	ers													
[Dec	c 00:			00:00:00.000									
F	Polarization	larization			Dual									
(Observing Fre	Column Density u/Tsky			GHz			-						
E	Bandwidth pe				GHz			-						
1	Water Vapour				Automatic Choice O Manual Choice									
	Column Dens				0.913mm (3rd Octile)									
t	au/Tsky				tau0=0.158, Tsky=39.538									
1	sys				157.027 К									
Individual Paramet	ters													
	12m Array				7m Array T				Total	Total Power Array				
Number of Antenna	as <u>34</u>				9 2			2	2					
Resolution	0.00000	arcsec		•	5.97	74554 arcsec			17.9	17.923662 arcsec				
Sensitivity(rms)	0.00000	0.00000 Jy		•	0.000	000	Jy	-	0.000	00	Jy	-		
(equivalent to)	Infinity	к		•	0.000	000	К 🚽		0.00000		к	-		
Integration Time	0.0000	s		•	0.000	0000 s		-	0.00000		s	-		
Integration Time Unit Option Automatic 💌									•					
		Coloulate Interaction Time												

Calculate Integration Time

Calculate Sensitivity

Grazie

