

An Introduction to CASA and Simulations with Simdata

Nuria Marcelino (NRAO)

ALMA ES Proposal Preparation Tutorial Charlottesville - May 9, 2011

General Description

- CASA is the post-processing package for ALMA (and EVLA) both interferometric and single dish
- The ALMA pipeline is being built from CASA toolkit
- Toolkit packaged into most commonly used *tasks* for users
- Designed with parallelization in mind
- CASA in active community use since October 2007
- Release 3.1.0 available since Dec. 30 2010
 - Most recent linux flavors, Mac OSX for Leopard & Snow Leopard
 - Available to anyone from CASA homepage:

http://casa.nrao.edu

• Next release (3.2.0) expected May 2011

CASA Documentation and Web Resources

- Casaguides are fully annotated scripts including screen shots
- There is also a complete CASA user manual
- Currently there are millimeter guides for EVLA, CARMA, and SMA that serve as important learning tools for future ALMA data
- CASAguides for ALMA Science Verification data on near horizon

- Extracting scripts from these tutorials
- ALMA Guides
- ALMA Quick Reference &

VLA Guides

Tutorials

Inside CASA

 > Tasklist
 Will show an organized list of all currently available tasks

Opportunities for full ALMA related CASA tutorials will be available after the proposal call deadline (June 30)

ALMA ES Proposal

Shell No. 4 - Konsole			
Session Edit View Bo	ookmarks Settings Help		
CASA <56>: tasklist > tasklist Available tasks, or deprecated tasks Single Dish sd* t	: () ganized by category in curly brackets { casks are available	(experimental tasks }). after asap_init() is	in parens () run.
Import/export	Information	Editing	Manipulation
<pre>exportfits exportuvfits importaipscaltable importasdm importevla importfits importfitsidi importuvfits importvla (exportasdm) (importevla2) (importgmrt) {importoldasdm}</pre>	<pre>imhead imstat imval listcal listhistory listobs listvis plotms plotxy vishead visstat (listsdm)</pre>	fixvis flagautocorr flagcmd flagdata flagmanager msview plotms plotxy (flagdata2)	concat conjugatevis cvel hanningsmooth imhead msmoments plotms plotxy split testconcat vishead (uvcontsub2)
Calibration accum applycal bandpass blcal calstat clearcal fixvis fluxscale fringecal ft gaincal gencal listcal plotcal polcal setjy smoothcal uvmodelfit uvsub	Modeling setjy uvcontsub uvmodelfit uvsub (uvcontsub2)	<pre>Imaging clean deconvolve feather ft imcontsub (autoclean) (boxit) (csvclean) {mosaic} {widefield}</pre>	Analysis imcollapse imcontsub imfit imhead immath immoments imregrid imsmooth imstat imtrans imval listvis slsearch splattotable (specfit)
Visualization	Simulation	Single dish	Utility
clearplot imview msview plotants plotcal plotms plotxy viewer	simdata {oldsimdata}	asap_init sdaverage sdbaseline sdcal sdcoadd sdfit sdflag sdflagmanager sdimaging sdimprocess sdlist sdmath sdplot sdsave	browsetable clearplot clearstat concat conjugatevis find help par.parameter help taskname imview msview plotms rmtables startup taskhelp

sdscale

cdcmoo+k

tasklist

What is Simdata Good For?

Take a model image and find out how it would look if observed with ALMA

- Number of antennas
- Antenna configuration
- Length of observation
- Noise*
 Thermal Noise
 - Phase Noise

6

Model Image 30Dor Spitzer IRAC 8um image from SAGE

Model Image Resized and now at 230 GHz

Relative J2000 Right Ascension (arcsec)

Now ~15 times more distant!

Field of view at 230 GHz

Fourier Transforms of Images

From http://carmilumban-ap186.blogspot.com

Scales Measured in Compact Early Science

Antenna Placement

uv-coverage

Point Spread Function

NAASC

2 hour observation in Compact Configuration

Full Science 12m Array - Compact

Antenna Placement

uv-coverage

synthesized beam

NAASC

Full Science I 2m Array - Extended

2 hour observation

NAASC

45"

Model: Early Science Compact Configuration

Model Image

"Observed" Image

2 hour observation

Model: Full Science Main Array - Compact

Model Image

2 hour observation

"Observed" Image

NAASC

Model: Full Science Main Array - Extended

Model Image

Convolved Model

"Observed" Image

2 hour observation

Model: Early Science Compact & Extended

Compact

Limage 45" 50" 55" -40° 05" 10" 15" 10^h00^m01^s 00^s 09^h59^m59^s J2000 Right Ascension

Model

Extended Array

2 hour observation

Basic Simdata Workflow

- Start CASA
- Input image file into Simdata
- Predict what ALMA would see using Simdata
- Add noise (optional)
- Compare ALMA image with input image

CASA Basics

- To start > casapy
- To look at task inputsinp clean
- ➢ Grey: expandable parameters
- ➢ Red: invalid value
- Blue: accepted value but not the default
- To see full help > help clean
- Reset defaults > default clean

To run > go

*	
171	

CASA <71>: inp			
> inp()			
<pre># clean :: Invert</pre>	and	deconvolve	i
vis	=		
imagename	=		
outlierfile	=		
field	=		
spw	=		
selectdata	=	'chicken'	
mode	=	'mts'	
nterms	=	1	
reffreg	-		
renneq	_		
gridmode	=		
niter	=	500	
gain	=	0.1	
threshold	=	'0.0mJy'	
psfmode	=	'clark'	
imagermode	=	'mosaic'	
mosweight	=	False	
ftmachine	=	'mosaic'	
scaletype	=	'SAULT'	
cyclefactor	=	1.5	
cyclespeedup	=	-1	
flatnoise	=	True	
multiscale	=	[]	
interactive	=	False	
mask	=	[]	
imsize	=	[256, 256]	
cell	=	['1.0arcsec'	1
phasecenter	=		-
restfreq	=		
stokes	=	'I'	
weighting	=	'natural'	
uvtaper	=	False	
modelimage	=		
restoringbeam	=	['']	
pbcor	=	False	
minpb	=	0.2	

mages w	ith selected algorithm
#	Name of input visibility file
#	Pre-name of output images
#	Text file with image names, sizes, ce
#	Field Name or id
#	Spectral windows e.g. '0~3', '' is al
#	Other data selection parameters
#	Spectral gridding type (mfs, channel,
#	Number of terms used to model the sky
#	development)
#	Reference frequency for MFS (relevant
#	frequency
#	Gridding kernel for FFT-based transfo
#	Maximum number of iterations
#	Loop gain for cleaning
#	Flux level to stop cleaning, must inc
#	Method of PSF calculation to use duri
#	Uptions: 'csclean' or 'mosaic', '', u
#	Individually weight the fields of the
#	Gridding method for the image
#	Options, LDBCORL LCAULT
#	options: 'PBCOR', SAULI'
#	Change depth in between of coccean c
#	Controls whether searching for clean
#	(True) or in an optimal signal-to-no
#	(Thue) of in an optimat signation
#	Deconvolution scales (pixels); [] = s
#	Use interactive clean (with GUI viewe
#	Cleanbox(es), mask image(s), region(s
#	x and y image size in pixels. Single
#	x and y cell size(s). Default unit ar
#	Image center: direction or field inde
#	Rest frequency to assign to image (se
#	Stokes params to image (eg I,IV,IQ,IQ
#	Weighting of uv (natural, uniform, br
#	Apply additional uv tapering of visib
#	Name of model image(s) to initialize
#	Output Gaussian restoring beam for CL
	Output primary been corrected image

Output primary beam-corrected image # Minimum PB level to use

Or use script mode - only need to set non-default values: > clean(vis='visname',field='2',mode='channel')

Basic Simdata Inputs

- Image of target
- Observing time
- Antenna configuration
- Optional noise parameters

Basic Simdata Inputs

CASA <4>: inp simdata -----> inp(simdata) # simdata :: mosaic simulation task: project = 'sim' # root for output file names modifymodel = False # modify model image skymodel = '\$project_skymodel' # model image to observe or

skymodel	<pre>* '\$project.skymodel</pre>	l' #	<pre>model image to observe or modify</pre>	
setpointings	= False			
ptgfile	<pre>* '\$project.ptg.txt'</pre>	#	list of pointing positions	
predict	True	#	calculate visibilites using ptgfile	
complist	÷ ''	#	optional componentlist to observe	
compwidth	≠ '2GHz'	# #	optional bandwidth if simulating from components only	
antennalist	≠ 'alma.out10.cfg'	# #	antenna position file or "" for no	
refdate	+ '2012/05/21/22:05:	00	<pre># time/date of observation *see</pre>	
		#	help	
totaltime	= '7200s'	#	total time of observation	
*	Parameters that we	ire	Be verlangeer parameters	
	Ехр	lan	ation of what the parameters are	
NRAO	ALMA ES F	Propo	osal Preparation Tutorial Charlottesville, May 9, 2011	19

Basic Simdata Inputs

<pre>CASA <4>: inp simda > inp(simda # simdata :: mosai</pre>	ta ta) c s	; imulation task:		
project	=	'sim'	#	root for output file names
modifymodel	=	False	#	modify model image
skymodel	=	'\$project.skymode	U.	<pre># model image to observe or modify</pre>
setpointings	=	False		
ptgfile	=	<pre>'\$project.ptg.txt</pre>	' #	list of pointing positions
predict	=	True	#	calculate visibilites using ptgfile
complist	=		# #	optional componentlist to observe with skymodel
compwidth	=	'2GHz'	#	optional bandwidth if simulating from
			#	components only
antennalist	=	'alma.out10.cfg'	# # #	components only antenna position file or "" for no interferometric MS
antennalist refdate	=	'alma.out10.cfg' '2012/05/21/22:05	# # :00	<pre>components only antenna position file or "" for no interferometric MS ' # time/date of observation *see help</pre>

Model Input FITS File Header must include:

- Coordinates
- Brightness units
- Observing frequency
- Pixel Scale (angular and spectral)
- Polarization (if needed)
- OR: Modify FITS image within Simdata

Change your input file: modifymodel

			•
modifymodel	=	True #	modify model image
skymodel	=	'\$project.skymodel'	# model image to observe or modify
inbright	=	'' #	set peak surface brightness e.g.
		#	"1.2Jy/pixel" or ""
indirection	=	#	"J2000 19h00m00 -40d00m00" or ""
incell	=	'' #	cell/pixel size e.g. "0.1arcsec" or ""
incenter	=	'' #	frequency of center channel e.g. "89GHz" or
		#	
inwidth	=	** #	channel width e.g. "10MHz" or ""

- modifymodel = True
- skymodel = "30dor.fits"
- inbright = "0.06mJy/pixel"
- indirection = "J2000 10h00m00 -40d00m00"
- incell = "0.15arcsec"
- incenter = "230GHz"
- inwidth = '2GHz'

setpointings

setpointings	=	True	
integration	=	'10s'	<pre># integration (sampling) time</pre>
direction	=		# "J2000 19h00m00 -40d00m00" or "" to center # on model
mapsize	=	['larcmin',	'1arcmin'] # angular size of map or "" to cover # model
maptype	=	'hexagonal'	<pre># hexagonal, square, etc</pre>
pointingspaci	ng =	'larcmin'	<pre># spacing in between pointings or "" for 0.5 # PB</pre>

• integration = '600s'

- Time average for each data point

- mapsize = "
- pointingspacing = "

predict

predict	=	True	#	calculate visibilites using ptgfile
complist	=		# #	optional componentlist to observe with skymodel
compwidth	=	'2GHz'	# #	optional bandwidth if simulating from components only
antennalist	= '	alma.out10.cfg'	# #	antenna position file or "" for no interferometric MS
refdate	= '	2012/05/21/22:05	:00	<pre>' # time/date of observation *see help</pre>
totaltime	=	'7200s'	#	total time of observation
caldirection calflux	n = =	'1Jy'	#	pt source calibrator [experimental]
sdantlist	=	10	# #	single dish antenna position file or "" for no total power MS
sdant	=	0	#	single dish antenna index in file
		Te use the		

To use the ES configurations

- download the ES configuration files from casaguides.nrao.edu
 - Simulating Observations in CASA 3.1
 - ALMA Early Science Configurations

predict

predict	=	True	#	calculate visibilites using ptgfile
complist	=		# #	optional componentlist to observe with skymodel
compwidth	=	'2GHz'	# #	optional bandwidth if simulating from components only
antennalist	=	'alma.out10.cfg'	# #	antenna position file or "" for no interferometric MS
refdate	=	'2012/05/21/22:05	:00	<pre>' # time/date of observation *see help</pre>
totaltime	=	'7200s'	#	total time of observation
caldirection	=		#	pt source calibrator [experimental]
calflux	=	'1Jy'		
sdantlist	=	11	# #	single dish antenna position file or "" for no total power MS
sdant	=	0	#	single dish antenna index in file

To use the ES Compact Configuration

- repodir = os.getenv("CASAPATH").split(' ')[0]
- antennalist = repodir+"/data/alma/simmos/CompactCycle0.cfg"

predict

predict	=	True	#	calculate visibilites using ptgfile
complist	=		# #	optional componentlist to observe with skymodel
compwidth	=	'2GHz'	# #	optional bandwidth if simulating from components only
antennalist	=	'alma.out10.cfg'	# #	antenna position file or "" for no interferometric MS
refdate	=	'2012/05/21/22:05:	00	' # time/date of observation *see help
totaltime	=	'7200s'	#	total time of observation
caldirection calflux	=	'1Jy'	#	Total time for the observation
sdantlist	-		# #	(must be \geq integration
sdant	=	0	#	times the number of pointings)

image

image	 True
vis	'\$project.ms'
modelimage	
imsize	= θ
cell	
niter	- 500
threshold	= '0.1mJy'
weighting	<pre>= 'natural'</pre>
mask	= []
outertaper	- []
stokes	- 'I'

##

#

#

(re)image \$project.ms to \$project.image
Measurement Set(s) to image
prior image to use in clean e.g. existing single dish image
output image size in pixels (x,y) or 0 to match model
cell size with units or "" to equal model
maximum number of iterations (0 for dirty image)
flux level (+units) to stop cleaning
weighting to apply to visibilities
clean mask see help clean
uv-taper on outer baselines in uv-plane
Stokes params to image

- image = True
- help clean for details

Simdata Output

analyze	=	True	#	(only first 6 selected outputs will be
			#	displayed)
showarray	=	False	#	like plotants
showuv	=	True	#	display uv coverage
showpsf	=	True	#	display synthesized (dirty) beam
showmodel	=	True	#	display sky model at original resolution
showconvolved	=	False	#	display sky model convolved with output
			#	beam
showclean	=	True	#	display the synthesized image
showresidual	=	False	#	display the clean residual image
showdifference	=	True	#	display difference image
showfidelity	=	True	#	display fidelity

- analyze = True
- showarray = True
- showconvolved = True
- showdifference = False
- showfidelity = False

NAASC Simdata Output – ES Compact Array

NRAO

sim-Compact0/sim-Compact0.psf

30

Simdata Output

Note that there are six pointings, and we previously set integration time to 600 seconds, so this product is less than the 7200 seconds set in *totaltime*

Simdata Output – Viewer

http://casa.nrao.edu/CasaViewerDemo/casaViewerDemo.html

Name	Type	6	Display As
	Directory		
30dor.fits	FITS Image		
Screen	Image		
simES.absconv	Image		
simES.absdiff	Image		
simES.diff	Image		
simES.fidelity	Image		
simES.flux	Image		
simES.flux.pbcoverage	Image		
simES.image	Image		
simES.image.flat	Image	U	
simES.model	Image		
simES.ms	Measurement Set		
simES.psf	Image		
simES.quick.psf	Image		
simES.residual	Image	Ψ	

Update

Other Simdata Options Thermal Noise

thermalnoise	= 't	sys-atm'	#	add thermal noise: [tsys-atm tsys-
user_pwv t_ground	=	1.0 270.0	# # #	<pre>manual ""] Precipitable Water Vapor in mm ambient temperature</pre>
leakage	=	0.0	#	cross polarization
imaga				
тшаде	=	True	#	(re)image \$project.ms to
Tillage	=	True	# #	(re)image \$project.ms to \$project.image

- thermalnoise = 'tsys-atm'
- image = True
- vis='\$project.noisy.ms'
- overwrite = True

Other Simdata Options Thermal Noise

45"

50"

55"

-40°

05"

10"

15"

10^h00^m01^s

008

J2000 Right Ascension

J2000 Declination

Sky Model

Thermal Noise

NAASC

09^h59^m59^s

Your Turn

- Find a fits file of an object you want to image
- Use simdata to see how it would look if observed with ALMA
 - -Rescale image if necessary
 - -Try different antenna configurations
 - -Add noise if interested
- Don't be afraid to ask for help!

Your Turn

- Sample images can be found at:
 - <u>http://casaguides.nrao.edu/index.php?title=Sim_Inputs</u>
- Simdata walk-throughs available at:
 - <u>http://casaguides.nrao.edu</u>
 - Simulating observations in CASA 3.1

Extra Slides

Simdata output images

- Most important images are:
 - \$project.image output simulated cube/plane
 - \$project.image.flat moment 0 of simulated cube/plane
 - \$project.skymodel input cube/plane
 - \$project.psf synthesized beam (point spread function)
 - \$project.residual residuals after cleaning

Simdata hands-on quickstart

- Start CASA and look at simdata
 - casapy, inp simdata, help simdata
- Go through simdata tutorial
 - <u>http://casaguides.nrao.edu</u>
- Get image for your own simulation
 - <u>http://casaguides.nrao.edu/index.php?title=Sim_Inputs</u>

Simdata FAQ

- Find the antenna configuration files
 - repodir = os.getenv("CASAPATH").split(' ')[0]
 - antennalist = repodir+"/data/alma/simmos/alma.early.250m.cfg"
- Problems with FITS file?
 - modifymodel = True
 - Set all parameters manually
- "image detached" error message?
 - image = True
 - analyze = True

Simdata FAQ

- Simulation running too long?
 - Increase value of "integration"
 - Decrease number of required pointings
 - Clean for fewer iterations
- Can't see effect of added thermal noise?
 - thermalnoise = 'tsys-atm'
 - vis = '\$project.noisy.ms'
 - Check brightness of input image vs expected noise

Import & Calibration

- Standard gain & bandpass calibration
 - Flexible mapping of calibration from one spectral window to others
 - Phase-only, Amplitude-only options
 - Polarization calibration

 Flexible UV-visualization and flagging options:

UV-spectrum in plotms, colorized by spectral window

NAASC

Imaging & Deconvolution

- Single field imaging spectral line imaging
- Multi-frequency Synthesis continuum
 Imaging
- Mosaic imaging
 - Joint deconvolution (Miriad style) and by gridding convolution
 - Mosaicing with heterogenous arrays (ALMA, CARMA)
- Multiscale clean
- Interactive cleaning

Interactive clean viewer

ALMA ES Proposal Preparation recornario Charlottestine, riaj 2, 201

Atmospheric phase fluctuations

- Variations in the amount of precipitable water vapor (PWV) cause phase fluctuations and result in
 - Low coherence (loss of sensitivity)
 - Radio "seeing", typically 1" at 1 mm
 - Anomalous pointing offsets
 - Anomalous delay offsets

Patches of air with different water vapor content (and hence index of refraction) affect the incoming wave front differently.

Other Simdata Options Phase Noise

Sky Model

No Phase Noise

NAASC

Phase Noise

NAASC

Other Simdata Options Phase Noise

- Start with the visibilities (measurement set) created by simdata
- Use the "toolkit" to add phase noise
 - http://casa.nrao.edu/docs/CasaRef/CasaRef.html
 - <u>http://casaguides.nrao.edu/index.php?title=Corrupt</u>
 - sm.openfromms("simPN.ms")
 - sm.settrop(mode='screen',pwv=1.0,deltapwv=0.15)
 - sm.corrupt()
 - sm.done()
- Use clean (in CASA) to make the image

