Radio flares from young stars in Orion

Víctor M. Rivilla

iALMA Fellow Osservatorio Astrofisico di Arcetri

Collaborators: Jan Forbrich (University of Vienna), C. J. Chandler (NRAO), J. Martín-Pintado (CAB)

Flares from young stars

• Pre-main sequence (PMS) stars exhibit spectacular flares events detected in X-rays (1000 times solar flares).

- Origin: Violent coronal MAGNETIC RECONNECTION EVENTS
- These events are expected to also produce **highly-variable (flaring) non-thermal emission at long wavelengths** accelerated electrons in magnetic loops producing gyrosyncrhotron
- However, the physics and geometry associated with non-thermal cm/(sub)mm emission from young stars are still poorly constrained.

The solar paradigm

• Radio and X-ray emission are related (magnetic energy release).

But what about YOUNG STARS?

Scientific background: cm/mm variability from young stars

- Centimeter monitorings (2-6 cm) detected LONG-TERM VARIABILITY in <u>timescales of years-months</u> (Felli+93, Zapata+04).
- **OPEN QUESTION:** Due to long-term processes or simply a sequence of shorter timescale events?
- Only a few serendipitously detected impressive flares with SHORT-TERM VARIABILITY on <u>timescales of hours to days</u> have been reported.

Forbrich+2008 (VLA) 1.4 cm (22 GHz)

Massi+2006 (PdB) 3 mm (90 GHz)

Bower+2003 (BIMA) 3 mm (86 GHz)

New 7 & 9 mm VLA monitoring of Orion

2 MAIN AIMS

- Monitoring at higher frequencies (33-45 GHz)
- Study of long-term and also **short-term variability** (different separation between epochs between hours and months).

Orion is a perfect target because it harbors a dense population of PMS low-mass stars.

7 & 9 mm VLA monitoring: results

- We detected 19 radio sources
 - G E 15 C 25 6 7 12 Trapezium region 5 10 5 5 35 10 5

Radio variability is very common

- Significant flux density variation even in scales of hours!
- Rough estimate of flaring rate detected in Orion (0.14 flares/day)

Detection of a new radio source: OHC-E

• Two 7 mm observations separated by only 10 days.

Rivilla et al., submitted

Comparison with X-ray detections

- The non-thermal emission is expected to arise from the same magnetic reconnection events that produce X-ray emission.
- The radio detections correspond with the brighter X-ray stars.

Rivilla et al., submitted

Improved VLA: much more sensitive observations

Zapata et al. 2004, "old VLA", 3.6 cm

Improved VLA: much more sensitive observations

Forbrich & Rivilla, in prep; new VLA, 4-6 cm

Flux density curves (only 4 sources)

5 epochs in (almost) 5 consecutive days

Flux density curves: 6 min resolution!

Simultaneous VLA and Chandra observations

Radio and X-ray flares are correlated!!!

• Exciting... but sometimes the situation is different...

Radio flares without X-ray flare, or viceversa...

What about higher frequencies (3, 2, 1 mm ...)?

SMA continuum observations of the MonR2 cluster

- MonR2 is a crowded stellar cluster with many PMS stars.
- Our submm SMA observations (sensitivity 10 mJy) have not detected emission from any of the low-mass stars .
- Assuming the flaring rate detected in Orion and the sensitivity, we would expect ~ 0 flares/day!!!

NEED OF HIGHER SENSITIVITY (~10 μJy)

Dierickx, Jiménez-Serra, Rivilla, et al., submitted

So... ALMA, of course!

- A pointing of ALMA observation will provide a catalogue of many PMS stars with (sub)mm emission.
- A single polarization ALMA observation at band 3 (90 GHz) with full BW of 7.5 GHz and 50 antennas can reach 8 μ Jy sensitivity limit in only < 3 hr of on source observing time 6 radio flares in a single observation!
- Cycle 2 proposal 3 mm (90 GHz) rejected.

But we need not only sensitivity... also spatial resolution

• Only mm-VLBI (including ALMA) provides the needed sensitivity and spatial resolution to resolve the small-scales (< 0.1 AU; << 1 mas) of magnetic loops involving the central star and the circumstellar disk.

• FURTHER IMPLICATIONS: high energy irradiation of protoplanetary disks, impact on planet formation, improvement of previous derivations of parallax distances, effects on interferometric imaging techniques...

Radio flares from young stars in Orion

Víctor M. Rivilla

iALMA Fellow Osservatorio Astrofisico di Arcetri

Grazie!

