How do stellar winds break free from the star's gravity?

Anita Richards, UK ARC, Manchester

with thanks to ALMA and e-MERLIN/EVN colleagues

Acceleration of clouds Inhomogenous mass loss Shocks and turbulence

EUROPEAN ARC

Mass loss from AGB/RSG stars

- Stellar pulsations lift photosphere
 - 5-7 km/s (*Reid*+'97)
 - Dissipated at $>5R_{*}$
- Wind cools, dust forms Radiation drives grains

- SiO masers show infall/outflow at $<5R_{*}$
 - How can this lead to steady expansion?
 - Pressure on small Orich grains not efficient Woitke06
- Scattering on larger grains (low-mass stars, Norris+12)?
- Radiation pressure on lines? How is matter ejected from the stellar surface?
 - Pulsation?
 - Convection/star spots?
 - Magnetic forces?

Water maser cloud measurements

- Fit 2D Gaussian component to each spot:
 - Measure beamed size
 - Spots in 1-2 km s⁻¹ series
- Series = discrete clouds
 - Clouds 30–100 x overdense
 - Filling factor <1%
 - Contain 30-90% mass
 - Few formed per stellar P
- Beaming angle $\Omega \sim \left(\frac{\text{peak spot size}}{\text{feature size}} \right)^2$

OH masers interleave H₂O

- Mainline OH inner rim in 22-GHz H₂O shell
 - 22 GHz 400-1200K, $n \leq 5 \times 10^{15} \text{ m}^{-3}$ (quenching density)
 - OH needs <500K, lower density gas
- Abundance differences?
- 22 GHz H₂O masers concentrated in dense clumps

 OH from gas in between

 Seen for other evolved stars
 - OH 1612 always outside H₂O

22 GHz cloud size depends on star size

properties determined at ejection from

- Not microphysics of dust cooling
- If outflow expands as r^{-2} , birth radius $(5-10)\% R_*$
- VLTI etc. observations & convection cell models suggest stellar surface inhomogeneities on $\sim 10\%$ scale
 - Wittkowski+11 ; Chiavassa+

Shrinking of brighter masers

- Component size s
- Intensity I_v
- Brighter spots are smaller

 "Amplification-bounded" beaming from ~spherical clouds

But *sometimes* brighter=bigger

 Spectral peak components swell

- Shock 'into page'
 - Maser propagates perpendicular to shock
 - Pump photons escape
 orthogonally
 - Entire surface emission is amplified
 - "Matter bounded"

beaming

Apparent size
 ~ actual size

Maser properties reveal wind disturbances

- Brighter = smaller beamed size?
 - Smoothly expanding spheres
- Brightest emission often ~cloud size?
 - Rapid maser variability
 - Stars with deepest pulsation amplitudes
 - Unusual OH flares
 - Shocked slabs

Richards Elitzur & Yates 2011 Elitzur Hollenbach & McKee 1992

Shocks and Turbulence

- How far does the stellar pulsational influence reach?
 - Why are SiO maser motions so disordered?
- Direct measurements of turbulence:
 - Line width fluctuations
 - Maser proper motions
- Fractal scales
 - Incompressible/ Kolmogorov within clumps
 - Shallower slope on larger scales: supersonic dissipation? Strelniski+'02, Silant'ev+06, Gray'12, Uscanga
- Need full range of scales

 Inside and between clouds

Sub-mm water maser predictions

Spatial distribution

- 658 GHz starts inside dust formation zone
 - But at larger radii than SiO
 - Extend almost to where OH begins!!!
- At least 325-GHz is as predicted
 - Low excitation temperature, large inner radius
- 325-GHz some faint extreme-velocity emission
 - Close to line of sight to star
 - Moderate acceleration

1000

22 GHz

 $10000 \ 100000 \ 1e+06$ n(H₂O) (cm⁻³) 1000 10000 100000 1e+06 $n(H_2O) (cm^{-3})$

- 325-GHz extends to lower wind densities than 22 GHz
 - But more easily quenched
- 321- inner overlap with 22-GHz
- 5 First 658-GHz model
 - Hard to explain observed extension
 - Different lines different beaming?

Shocks and inhomogeneities

- 658- and 325-GHz masers appear to curve round 'C'
 - Wind colliding with dense clump?

- Can shock heating explain extended high-excitation lines?
 - Rel'nship shocks/dust (Hoffner)
- Species separate 10-au scales
 - At similar radii but in differentdensity environment/clumps?
 - Not co-propagation

VLBI + ALMA for sub-mm masers

- Sub-mm VLBI needed to resolve proper motions, spots
 - Multiple species: constrain temperature, density, V field
 - Maser physics, fundamental physics (non-Gaussianity)
 - Kinematics, fractals, (non)co-propagation...
 - Shock/turbulence diagnostics on sub-au scales
 - Similar sub-mm water maser science possible in SFR
- AGB/RSG spot at few 100s/1000s pc: $\leq 0.1 \text{few mas}$
 - Whole clouds up to few tens mas
 - Total flux densities needed for full maser modelling
 - Need 0.5 km/s spectral resolution, if possible finer
 - But also continuum for calibration sources?
 - ALMA subarray e.g. 0.5 -15 km to detect all the flux
 - Detect star, provide astrometry, help calibration
 - LLAMA? (~100s km South American baselines)

Spectral line VLBI at 321/325 GHz???

- Most telescopes with 230 GHz have 345 GHz band
- Masers few Jy per 40 µmas beam per 0.5 km/s
 - 1-hr sensitivity ten(s) mJy
 - RadioAstron (similar bm) detects 22 GHz masers
- Biggest challenge bandpass calibration?
- Next... 658 GHz VLBI?
 - Polarization?
 - Avoid Faraday rotation/ beam depolarization !

Pux Density (Jy)

More practical than some projects?

Singer Constanza Biagini Clara Moskowitz/SPACE.com

