ALMA OBSERVATIONS OF HIGH-REDSHIFT (RADIO) GALAXIES (AND AGN)

AAYUSH SAXENA, LEIDEN/INAF-OAR ROME BOLOGNA, 26 FEBRUARY 2019

LAURA PENTERICCI, HUUB RÖTTGERING (LEIDEN), PHILIP BEST (EDINBURGH), RODERIK OVERZIER (RIO), KEN DUNCAN (LEIDEN), GARY HILL (UT), ISABELLA PRANDONI (BOLOGNA)

WHAT HAS ALMA TOLD US ABOUT GALAXIES AND QUASARS AT HIGH REDSHIFTS?

Z ~ 5 - 6 TYPICAL SFG OBSERVATIONS Capak et al. (2015, Nature)

- Exp. time ~20 min per source
- <40% continuum detections</p>
- $[CII] lum = 0.3 2 \times 10^9 L_{sun}$
- \blacktriangleright SFR ~ 6 170 M_{sun} / yr
- Diverse dynamics
- Little to no dust: >12x less than low-z galaxies

See Pentericci et al. (2016) + others for z~7 SFGs

Z > 6 QSO OBSERVATIONS Venemans et al. (2016)

- Exp. time ~15 min per source
- Bright continuum detections
- $[CII] lum = 1.9 3.9 \times 10^9 L_{sun}$
- SFR ~ 100 1600 M_{sun} / yr
- Large dust masses: 1 20 x 10⁸ M_{sun}

WHAT ABOUT RADIO GALAXIES AT Z~6?

For lower z, see recent paper by Falkendal et al. (2018)

WHY STUDY HIGH-Z RADIO GALAXIES?

WHY STUDY HIGH-Z RADIO GALAXIES?

WHY STUDY HIGH-Z RADIO GALAXIES?

CANDIDATE HZRGS FROM TGSS ADR (150 MHZ) Intema et al. (2017)

10,000 square degrees of overlap with the VLA FIRST survey at 1.4 GHz

~66,000 sources with spectral index information

32 sources (0.05%) candidates shortlisted using strict selection criteria (spectral index, size, optical/ IR faintness)

CANDIDATE HZRGS FROM TGSS ADR (150 MHZ) Intema et al. (2017)

10,000 square degrees of overlap with the VLA FIRST survey at 1.4 GHz

~66,000 sources with spectral index information

32 sources (0.05%) candidates shortlisted using strict selection criteria (spectral index, size, optical/ **IR** faintness)

VLA L (1.4 GHz) and P (350 MHz) observations in A-configuration obtained for all 32 candidate HzRGs

Saxena et al. (2018b)

Line flux: 1.6e-17 erg/s/Å/cm² FWHM = 370 km/sEW > 40 Å

Saxena et al. (2018b)

I T IPIPIPIPIPIPI

Dec (J2000)

Dec (J2000)

VLBI imaging at 1.4 GHz by Gabanyi et al. (2018).

~5 mas resolution!!!

Reveals 2 lobes separated by 400 mas and possible emission from the core.

FOLLOW-UP:

8 hr MUSE observations for extended Lya around the radio source 8hr Subaru and 11hr FORS2 narrow-band observations for LAEs/ overdensities

WHAT CAN ALMA TELL US?

Systemic redshift: [C II] line Star-formation rate ISM morphology/jet-gas interaction. Is the radio jet from the AGN disturbing or displacing the gas? Dust content. Heavy obscuration of the central AGN?

Anything else?

Get involved!

DA-56