THE COMPLEX GAS KINEMATICS IN THE NUCLEAR REGION OF NGC 7213

PhD student: Francesco Salvestrini

Supervisor: Cristian Vignali Co-supervisors: Carlotta Gruppioni Francesca Pozzi Collaborator: Rosita Paladino

NGC 7213

Local **S0 galaxy** (z=0.005839, 1"~120pc) spectroscopically classified as **Seyfert** (Phillips 1979) / **LINER** (Filippenko & Halpern 1984).

Available data:

- X-ray: NuSTAR + XMM-Newton (+ Suzaku + Chandra)
- optical: SALT spectrum
- mid-IR: IRS spectrum
- sub-mm: ALMA Band 6 CO(2-1)
- sub-mm: APEX PI230 (?)
- radio: 4.8, 8.4, 20 GHz

NGC 7213

Local **S0 galaxy** (z=0.0058, 1"~120pc) spectroscopically classified as **Seyfert** (Phillips 1979) / **LINER** (Filippenko & Halpern 1984)

Available data:

►	X-ray: NuSTAR + XMM-Newton	(+ Suzaku + Chandra)
►	optical: SALT spectrum	Nustar (3-79 keV) ►Exp. time: 101.6 ks
►	mid-IR: IRS spectrum	Angular res.: 16" (FWHM)Energy res.: 400 eV at 6 keV
►	sub-mm: ALMA Band 6 CO(2-1)	XMM-Newton (3-10 keV) ►Exp. time: 132.5 ks
►	radio: 4.8, 8.4, 20 GHz	 Angular res.: 6" (FWHM, on-axis) Energy res.: 150 eV at 6 keV

normalized counts s⁻¹ keV⁻¹

(data-model)/error

NGC 7213

Local **S0 galaxy** (z=0.005839, 1"~120pc) spectroscopically classified as **Seyfert** (Phillips 1979) / **LINER** (Filippenko & Halpern 1984)

Available data:

X-ray: NuSTAR + XMM-Newton (+ Suzaku + Chandra)

CO (2-1) emission line map

ALMA Band 6 continuum:

point-like source

Optical peak emission
ALMA continuum
CO(2-1) emission

ſΩ

F

1 kpc

Ô

3

P

R

Conclusions

- Relatively weak AGN not affecting the ISM.
- Kinematical modelling of the molecular gas component.
- Potential outflow?

... and more to do!

- Mdust from detected continuum
- ► M_{gas} from APEX PI230 (?)
- New optical classification on proprietary SALT data

More details in Salvestrini et al. in prep.

Thank you!

BACKUP SLIDES

- ► 12MGS is a mid-IR selected sample (F_{12µm} > 0.22 Jy) consisting of 893 galaxies. → 118 classified as AGN
- Our sample consists of 76 galaxies having mid-IR spectra (5.5–35 µm & 10-37 µm).
- 26/76 galaxies having far-IR Herschel-PACS (~60-200 µm) and -SPIRE (~200-600 µm) spectra.
- Galaxies are classified as Seyfert 1, 2 (35/76, 38/76) and LINER (3/76).
- ▶ 0.0023 < *z* < 0.1849

- 12MGS benefits from an extensive data set, from X-ray to radio frequencies from different observational campaigns spread over the past 20 years.
- -dust re-emission 100 The SED decomposition has -unobserbed stars -estinguished stars been performed over the -torus 12um SED id. 70 10 entire sample of 76 galaxies NGC7469* z=0.0163 (Gruppioni et al. 2016). S, [Jy] 0.1 • L_{AGN} •SFR 0.01 • f(AGN)•*M*★ 0.001

0.1

Gruppioni et al. 2016

10

 $\lambda [\mu m]$

100

1000

Herschel SPIRE & PACS spectrographs

N_{H} from the 9.7 μm feature

Compton depth

$$\tau_{\rm s}(E_0) = x\sigma_{\rm KN}(E_0) \left[\frac{\int_0^{2\pi} \int_0^{\pi} P(E_0,\theta,\phi) N_{\theta,\phi} \sin\theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^{\pi} P(E_0,\theta,\phi) \sin\theta \, d\theta \, d\phi} \right]$$

 $\tau_{\rm s} ~\sim~ x ~\sigma_T N_{\rm H}$

$\tau_{\rm s}~\sim~0.8090~N_{24}$

Compton depth is defined as the *Thomson depth* of the medium *regard-less* of the energy spectrum of the incident photons

- X-ray source is isotropic
- Column-density distribution is spherically-symmetric

NGC 7213

TER

J2000 Right Ascension

Spettro IR NGC7213

normalized counts s⁻¹ keV⁻¹

(data-model)/error

Quasar as High-Redshift Standard Candles The Lx-Luv relation at high redshift

Co-authors: G. Risaliti, S. Bisogni, E. Lusso

Salvestrini et al. (in prep.)

The L_X - L_{UV} relation

Lusso et al. (2010)

 $\delta_{intr} \sim 0.35 - 0.40 \ dex$

The L_X - L_{UV} relation

- SDSS DR7
 (Shen et al. 2011)
- ► 3XMM-DR5
- No BAL sources
- Radio Quiet
- ► 1.6 < Γ_X < 2.8
- 2153 sources
- ▶ 0.065 < *z* < 4.925

Lusso and Risaliti (2016)

- SDSS DR7 (Shen et al. 2011)
 & DR12 (for z<5.3)
- No BAL sources
- Radio Quiet

Accurate selection

- Archival Chandra and XMM-Newton observations
- No X-ray flux upper limit
- ► 4.0 < *z* <7.08

Evolution with redshift?

analysis

Accurate X-ray

More details in: Salvestrini et al. in prep.

 $\log(L_X) = \gamma \log(L_{UV}) + \beta$

