On the dust and gas content of high-redshift galaxies hosting obscured AGN in the CDF–S

Quirino D'Amato

INAF - Istituto di Radioastronomia Alma Mater Studiorum – Università di Bologna

C.Vignali, R. Gilli, M. Massardi, C. Circosta

ALMA Science and Proposals Workshop – February 27th 2019

Obscured AGN

Outline

Scientific rationale and targets

Data analysis

- Results
- Conclusions and future perspectives

- Unabsorbed: $\log N_H < 21$
- **Compton thin**: 21 < log *N_H* < 24
- Mildly Compton thick: $\log N_H \sim 24 25$
- Heavily Compton thick: $\log N_H > 25$

obscured AGN fraction increases at high redshift

Sub-Millimetre Galaxies

Conclusions and future perspectives

SFR density and BH accretion density peak at z ≈ 2

Contribution of the host galaxy to the AGN obscuration?

Objectives and targets

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

White contour: CDF–S Red area: GEMS Green area: CANDELS $28' \times 28'$

Parent samples

- 34 AGN at z > 3, selected in the 4–Ms CDF–S (Vito+13)
- 8 AGN at z = 1.1–3.7, selected in the 1–Ms CDF–S (Rigopoulou+09)

Selection criteria

- Secure spectroscopic z > 2.5
- Column density log N_H > 23
- Detection at $\lambda_{obs} > 100 \mu m$

Derived sample: 6 sources

- 2.5 < z < 4.7
- 260–2000 counts in the 7–Ms CDF–S, ($2 < L_{2-10 \text{ keV}} < 6$)×10⁴⁴ erg s⁻¹
- SFR $\sim 10^{2-3} M_{\odot}/yr$
- $M_{*} \sim 10^{11} M_{\odot}$

Moments of the line

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

Flux

Velocity map

Velocity dispersion

Spectral fitting

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

XID	<i>v</i> ₀	FWHM
	(km/s)	(km/s)
34	498 ± 14	368 ± 32
403	-56 ± 33	308 ± 77
490(Blue c.)	-194 ± 26	474 ± 67
490(Red c.)	187 ± 12	162 ± 27

XID 34: the velocity peak is \sim 500 km/s shifted wrt the rest–frame velocity at the spectroscopic redshift

XID 490: double-peaked line, likely Doppler effect

XID 34: Merger?

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

Red: V-band (\sim 600 nm) HST Green: ALMA continuum @3 σ Blue: ALMA CO @3 σ Image size: 0.6 \times 0.9 arcsec

Relative motion between gas and SF component

Watchout for astrometry!

.....

Fitting model: 2–D Gaussian in the visibilities space

Scientific rationale and targets

Data analysi

Results

Conclusions and future perspectives

Assumptions

- Undetected sources: Size = mean of the detected sources, Error on a = 30%, Error on b = 50%
- XID 490 dust *b*: XID 490 dust *b*: Unconstrained by the fitting, assuming *R* = 0.8 (from the non-deconvolved image fitting), Error on *R* = 50%

Size gas > Size dust

Gas mass - Different approaches

Outline

Scientific rationale and targets

Data analysis

Results

Gas mass

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

 $M_{H_2}^{DUST} > M_{H_2}^{CO-SLED}$

 $M_{H_2}^{SMG} > M_{H_2}^{QSO}$

Undetected sources

Upper limits at the 3σ level measured on the images for both the line and continuum emissions.

Column density - Uniform sphere

.

Column density - Rotating "coin" disk

Dust mass and temperature

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

XID	T (K)	$M_d~(10^8~M_\odot)$
262	71	< 1.0
412	80	< 0.9
34	55	4.9 ± 0.7
403	65	$\textbf{4.8}\pm\textbf{0.5}$
546	65	< 1.5
490	69	4.2 ± 0.5

Temperature

Single temperature (error $\approx \pm 5$ K), gray body IR–SED fitting:

$$S_
u \propto B_
u(T_d) au$$

 $au \propto
u^eta \ , \ eta = 2$

Mass
$$M_d = rac{D_L^2 S_{obs}}{k_
u B_
u (T_d)(1+z)}$$
 $k_
u \propto
u^eta \ , \ eta = 2$

Dynamical mass

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

$$M_{dyn} \sin^2 i = 6.5 \cdot 10^4 \left(\frac{FWHM}{\text{km s}^{-1}} \right)^2 \left(\frac{a}{\text{kpc}} \right) M_{\odot}$$
 (Wang+13, Calura+14)
Assuming $v_{c,max} = 0.75 FWHM$

XID 403: $M_{dyn} \sin^2 i = 1.8^{+1.7}_{-0.9} \times 10^{10} \ M_{\odot}$ (Coppin+10 , De Breuk+14)

XID 490: $M_{dyn} \sin^2 i = 1.4^{+0.3}_{-0.3} \times 10^{10} M_{\odot}$

 $M_{bar} = M_* + M_{H_2} + M_{HI} \approx 10^{11} M_{\odot}$, ~ 10 $M_{dyn} \sin^2 i$ M_* from SED fitting, $M_{HI} \sim M_{H_2}/5$ (Calura+14)

For $M_{dyn} pprox M_{bar} \longrightarrow |i| \lesssim 10^\circ$, $h \gtrsim 6 \; {
m kpc}$ UNREALISTIC

Possible causes

- Underestimate $M_{dyn} \sin^2 i$ conversion factor
- Different CANDELS/HST emitting region size wrt ALMA
- Uncertainty on position of v_{c,max}, underestimate a due to low sensitivity

.

Outline

- Scientific rationale and targets
- Data analysis

Results

Conclusions and future perspectives • Sources have $M_{H_2} \sim 10^{10}~M_\odot$ and $M_d \sim 10^8~M_\odot$ confined in few kpc scale.

- The host galaxy ISM can significantly contribute to the obscuration of the central AGN for both spherical and disk model. $N_{H_{ISM}}^{SMG}$ is more consistent with N_{H_X} than $N_{H_{CM}}^{QSO}$.
- Rotating systems and one possible merger.

- Future observations at better resolution (< 0.1") and higher sensitivity (~6 h exposure to halve the current sensitivity) would drastically reduce the uncertainties on the physical quantities derived in this work.
- XID 403: CO–SLED coupling measured CO(7–6) with CO(2–1) by Coppin+2010 and CO(12–11) by Nagao+12 (upper limit).

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

THANKS FOR YOUR ATTENTION!

Continuum images

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives XID 34

XID 403

XID 490

Fitting Results

Outline

Scientific rationale and targets

Data analysis

Results

CO line						
XID	Flux density	Major axis	Axial ratio			
	(mJy)	(arcsec)				
34	1.5 ± 0.1	0.38 ± 0.04	0.6 ± 0.2			
403	0.7 ± 0.1	$\textbf{0.46} \pm \textbf{0.13}$	0.6 ± 0.3			
490	1.01 ± 0.07	$\textbf{0.26} \pm \textbf{0.04}$	0.5 ± 0.2			

Dust Continuum						
XID	Flux density	Major axis	axial ratio			
	(mJy)	(arcsec)				
34	0.23 ± 0.02	0.34 ± 0.07	0.6 ± 0.3			
403	$\textbf{0.41} \pm \textbf{0.02}$	0.27 ± 0.03	$\textbf{0.6} \pm \textbf{0.2}$			
490	0.19 ± 0.02	0.17 ± 0.05	_			

Geometrical models - Rotating disk

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

XID 490 Double peak, velocity maps

XID 403

Displacement

Outline

Scientific rationale and targets

Data analysi

Results

CO-SLEDs and Scoville relation

Outline

- Scientific rationale and targets
- Data analysis
- Results
- Conclusions and future perspectives

XID 490 – X-ray spectral fitting

Outline

Scientific rationale and targets

Data analysis

Results

XID 490 - IR SED

Outline

Scientific rationale and targets

Data analysis

Results

XID 490 – optical spectrum

Outline

Scientific rationale and targets

Data analysis

Results

T_{SYS}

Outline

Scientific rationale and targets

Data analysis

Results

UV distance

Outline

Scientific rationale and targets

Data analysis

Results

Phase and bandpass calibration

Outline

Scientific rationale and targets

Data analysis

Results

CO peak channels

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

D 490 BI

XID 490 RED

Total Spectra

Outline

Scientific rationale and targets

Data analysis

Results

Dust mass

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives

$$\begin{cases} L_{\nu} = \frac{4\pi D_{L}^{2} S_{obs}}{1+z} \\ L_{\nu} = 4\pi j_{\nu} V \end{cases}$$

where z is the redshift, D_L is the luminosity distance, S_{obs} is the flux density at the observed frequency ν_{obs} , V is the volume of the source and j_{ν} is the specific emissivity per unit volume (erg s⁻¹ Hz⁻¹ ster⁻¹ cm⁻³) that is equal to

$$j_{\nu} = \alpha_{\nu} B_{\nu}(T_d) = k_{\nu} \rho B_{\nu}(T_d)$$

 $\alpha_{\nu} = k_{\nu}\rho$ is the opacity per unit of path length (cm⁻¹), k_{ν} is the opacity per mass unit (g⁻¹ cm²) and $\rho = M_d/V$ is the density of the source (g cm⁻³). M_d is the total mass of the dust.

The opacity per mass unit is assumed to scale with the frequency as $k_{\nu} = 4(\nu/1.2 \text{ THz})^{\beta}$ (draine+07). The index β is set equal to 2.0 (e.g., magnelli+12,gilli+14).

Equalizing the two expressions of L_{ν} leads to the formula for the mass of the dust in the optically thin regime:

$$\frac{4\pi D_L^2 S_{obs}}{1+z} = 4\pi k_\nu \frac{M_d}{V} B_\nu(T_d) V$$
$$M_d = \frac{D_L^2 S_{obs}}{k_\nu B_\nu(T_d)(1+z)}$$

Interferometry

Outline

Scientific rationale and targets

Data analysis

Results

Conclusions and future perspectives T_{SYS} : Temperature of a resistor emitting (as black body) a signal equal to the sum of all the contributions to the noise, placed above the atmosphere.

$$T_{SYS} = T_{atm}(e^{ au} - 1) + T_{rx}e^{ au}$$

 T_{atm} : atmosphere, T_{rx} : instrument, τ : optical depth. Neglecting cosmic background (\sim 3 K).

$$\textit{rms} = \frac{2k_B \ T_{SYS}}{A_{eff} \sqrt{\Delta t \ \Delta \nu \ n_p \ N_{ant}(N_{ant}-1)}}$$