

DISK CHEMISTRY with ALMA

Linda Podio (AstroFIt Marie Curie Fellow, INAF-Arcetri Observatory)

C. Codella (INAF-Arcetri, Italy), F. Gueth (IRAM, France), S. Cabrit, A. Gusdorf (Obs Paris, France), B. Lefloch (IPAG, France), S. Leurini (ESO), R. Bachiller, M. Tafalla (OAN, Madrid), B. Nisini (INAF-Rome, Italy), C.-F. Lee (Sinica Inst, Taiwan), I. Kamp (Kapteyn, Groningen, NL), C. Ceccarelli (IPAG, France), P. Caselli (MPE, Germany), L. Testi (ESO, Germany)

WHY DISKS ? disks are the birthplace of planets

WHY CHEMISTRY ? from atoms and simple molecules to LIFE

WHY ALMA ?

high sensitivity & resolution to observe molecules in disks

Atoms & molecules in disks

surface layers —> molecules destroyed due to photodissociation by UV

outer disk/mid-plane (T <100 K) —> molecules freeze out onto dust grains H2O & COMs are efficiently produced by surface grain chemistry: X# ~ 10⁻⁶ - 10⁻⁴ BUT only a few percent released in gas-phase by non-thermal processes: Xgas ~ 10⁻¹¹ - 10⁻⁷

Only a few molecules observed in disks ... (CO, HCO+, CS, CN, HCN, ...)

Dutrey et al. 1997, 2007, Chapillon et al. 2011, 2012, Guillotteau et al. 2013, Thi et al. 2004, Oberg et al. 2009, 2010, 2012, Qi et al.,

... some recent detections with Herschel !!

L. Podio – 3° Workshop sull'Astronomia (sub-)mm in Italia, IRA-Bologna, Jan 2015

SO abundance in the JET & in the DISK !

Podio et al 2015

Estimates of SO abundances by comparing SO & CO column densities (we assume LTE-optically thin emission)

SO ORIGIN: shocks with grain mantles release (Pineau des Forets+ 1993, Flower+ 2003) or turbulent outflow-cloud interface (Viti+ 2002)

X(SO) ~ 10⁻⁸ - 10⁻⁷ much higher than in Class II disks ‼

SO abundance in Class II disks

SO abundance in Class 0 disks ?

Podio et al 2015

Class II disks (passively heated) N(SO) ≤ 10¹² cm⁻², X(SO) ~ 10⁻¹¹

Class 0 disk (HH 212) N(SO) ~ 10¹⁶ cm⁻², X(SO) ~ 10⁻⁸-10⁻⁷

first detections of COMs in disks with ALMA !

H₂CO in Oph IRS 48: ALMA resolved map CH₃OH/H₂CO < 0.3 -> H₂CO partially formed in gas-phase Van der Marel et al. 2014

c-C₃H₂ in HD 163296: ALMA resolved map -> ring=30-165 AU Qi et al. 2013

ALMA is ideal to study the disk chemistry !

