

Formation of complex molecules after energetic processing of icy grain mantles

Maria Elisabetta Palumbo INAF – Osservatorio Astrofisico di Catania mepalumbo@oact.inaf.it http://www.oact.inaf.it/weblab/

Terzo Workshop sull'Astronomia Millimetrica in Italia Bologna, 20-21 gennaio 2015

Table D1 1: List of detected molecules	adapted from http	//www.actrochymict	arg/actrochymist	icm html
Table D1.1. List of detected molecules	adabled from fillo	.// w w w.asu och vnnst.	org/astrochynnist	15111.110111
			0	

Number of stores								
2	2	4	5	Nu		0	0	10
	3	- 4 - NILI	J HC N				<u>(CH)</u>	
CN	H_2O^+		HCOOL	CH CN		CHCN	CH CH OH	
CH^+	HCN						CH CH CN	
ОН	OCS	HCS	NH-CN		CH CHCN		HC-N	CH-C-N
CO	UCS UNC	$\Gamma_2 CS$	H ₂ CN		HC-N			NH.CH.COOH
н.	HS	HNCS	112000 C.H	$C_2\Pi_4$	C.H	$\Pi_2 C_6$	$C_{13}C_{4}\Pi$	MI2CII2COOII
	N_2H^+	HOCO ⁺	SH.	CH_{NC}	C ₆ H	C.H.	CH-CONH-	
	C ₂ H	C.O	C-C-H	HCaCHO	CH-CHOH		C.H	
50	SO:	C.H	CH ₂ CH	H ₂ CCC	C.H	CH-CCHCN	CH-CHCH	
50	HDO	$HCNH^+$		H_2CCCC	C ₆ 11	NH-CH-CN	CH2CHCH3	
NS		H_0^+	SiC.	C N		INTI2CIT2CIN		
.15	HNO	- 1130 - C-S	HCCC	C ₅ N				
NO	OCN	C35	CH	HC N				
HCl	HCS ⁺	C.H.	HCCNC	c-H-C-O				
NaC1	HOC^+	$HC_{2}N$	HNCCC	CH_2C_3O				
	c-SiC	H ₂ CN	H-COH ⁺	C-N				
KCl	MoNC	SiC	CH	0,511				
AIF	C	CH ₂	CNCHO					
PN	C_{2}	C ₁ N	enterio					
SiC	C_{3}	PH_2						
CP	CH ₂	HCNO						
NH		HOCN						
SiN	NH ₂	HSCN						
SO^+	NaCN	HOOH						
CO^+	NaO	moon						
HF	MgCN							
LiH	H_2^+							
SH	SiCN							
FeO	AINC							
N_2	SiNC							
CF^+	HCP							
PO	CCP							
AlO	Aloh							
CN ⁻	H_2O^+							
OH^+	H_2Cl^+							
SH^+	KCN							
O ₂	FeCN							
Number of atoms								
					11	12	13	>13
					HC ₉ N	C_6H_6	$HC_{11}N$	C ₆₀
					CH ₃ C ₆ H	$CO(CH_2OH)_2$		C_{70}
					C ₂ H ₅ OCHO	C ₃ H ₇ CN		

Origin of interstellar molecules

Gas-phase reactions

Solid phase Energetic processing of icy mantles

(molecules are released to the gas phase after desorption of ices)

Icy grain mantles

- Freeze out of gas phase species (CO)
- Grain surface reactions
 (H₂O, CH₃OH, CH₄, H₂S)
- Energetic processing of icy mantles (CO₂, OCS)

species	abundance	references
H_2O	100	
CO	0-144	Chiar et al. 1994; Pontoppidan et al. 2003
CO ₂	10-32	Gerakines et al. 1999 ; Pontoppidan et al. 2008
CH₃OH	3-30	Allamandola et al. 1992; Dartois et al. 1999; Boogert et al. 2008
CH_4	2-10	Boogert et al. 1997; Oberg et al. 2008
NH₃	5-10	Tielens 1984; Lacy et al. 1998
H_2CO	3-7	Schutte 1994
OCN	1-8	Tegler et al. 1995
SO ₂	0.3-0.8	Boogert et al. 1997
OCS	0.04-0.1	Palumbo et al. 1997

It is generally accepted that other molecules are also present in icy grain mantles

The sample is processed by energetic ions (200-400 keV) and by UV photons separately or simultaneously.

IR spectra are taken before and after processing.

Vacuum chamber details

IR-detector

Methyl formate in star-forming regions

source	N(HCOOCH ₃)/N(H ₂)	references
Sgr B2 N(LMH) (hot core)	1.1×10 ⁻⁸	Snyder 2006
IRAS 16293-2422 B (hot corino)	> 1.2×10 ⁻⁸	Remijan & Hollis 2006
NGC 2264 MMS (hot core)	(0.7-5.3)×10 ⁻⁸	Sakai et al. 2007

 $N(CO) \approx 10^{-4} N(H_2)$ (Frerking et al. 1982)

 $N(CH_3OH) \approx 10^{-1} N(CO)$

 $CO \rightarrow HCO \rightarrow H_2CO \rightarrow CH_3O \rightarrow CH_3OH$ (Watanabe et al. 2007 Fuchs et al. 2009)

 $N(CH_3OH) \approx 10^{-5} N(H_2)$ assuming high CO depletion

 $N(\text{HCOOCH}_3) \approx 10^{-3} N(\text{CH}_3\text{OH})$ this

this work

Ţ

 $N(\text{HCOOCH}_3) \approx 10^{-8} N(\text{H}_2)$

The amount of methyl formate formed after ion irradiation can account for the observed abundances

Modica and Palumbo 2010, A&A 519, A22

Lv et al. 2014 PCCP 16, 3433

Terzo Workshop sull'Astronomia Millimetrica in Italia Bologna, 20-21 gennaio 2015

Present limits

Solid CH₃OH

Species not present before processing

\rightarrow	20% w.r.t. CH ₃ OH
\rightarrow	10%
\rightarrow	6%
\rightarrow	5%
\rightarrow	0.2% (methyl formate)
\rightarrow	0.1% (glycolaldehyde)
	$ \begin{array}{c} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \end{array} $

Modica and Palumbo, 2010

Terzo Workshop sull'Astronomia Millimetrica in Italia Bologna, 20-21 gennaio 2015

Fig. 8. Infrared spectra of a CH₃OH pure ice as deposited (dotted lines) and after irradiation with 200 keV protons (solid lines) in three different spectral regions from 3700 to 900 cm⁻¹ (2.70–11.11 μ m).

WP6. Laboratory Astrophysics

≻Open question:

What and how many complex molecules are formed in icy grain mantles by energetic processing?

≻Aim:

To build up a new and original experimental set-up that will detect molecules formed after energetic ion bombardment of simple ices, using a combination of laser desorption, He jet cooling and UV-tunable photo-ionization followed by high resolution mass-spectrometric analysis.

≻Gain:

Present relative sensitivity (i.e. IR spectroscopy) ~10⁻³ (column density) Expected relative sensitivity ~ 10⁻⁷ (mass abundance)

Future experimental procedure

200-400 keV ions

Future experimental procedure

Terzo Workshop sull'Astronomia Millimetrica in Italia Bologna, 20-21 gennaio 2015

Recruitment

1 PhD student (cycle XXX)

Dottorato in Scienza dei Materiali e Nanotecnologie Università degli Studi di Catania

1 post-doc fellow Submission deadline **26 February 2015** at 13.00

Terzo Workshop sull'Astronomia Millimetrica in Italia Bologna, 20-21 gennaio 2015

Acknowledgments

Giuseppe Baratta Giuseppe Compagnini Saro Di Benedetto Vincenzo Greco Zuzana Kanuchova Carlotta Scirè Giovanni Strazzulla Alessandra Taffara Riccardo Urso

MIUR

INAF

amos Seguro