Observations of giant molecular clouds in Nearby Galaxies with ALMA

Rosita Paladino Università di Bologna - INAF IRA

in collaboration with Roberto Galvan-Madrid

Star formation processes: currently open questions

Nearby galaxies

The galactic GMC W49

Simulations of ALMA observations

Star formation processes: currently open questions

Some still open questions about star formation in galaxies:

- ★ Importance of local (disk or cloud instability) versus global effects (spiral density waves, tidal forces, magnetic fields) in triggering SF.
- * How the properties of SF depend on various environmental parameters
- * How SF might differ in nuclear regions or in burst and quiescent modes
- ★ Which is the role of the relativistic phase (cosmic rays and magnetic field) in SF processes
- **★** Do giant molecular clouds care about the galactic structure?

M51 @ 7.6 Mpc

1.4 GHz image (VLA) CO(1-0) contours (IRAM) Resolution ~ 1 arcsec ~ 40 pc

Schinnerer et al., 2013 Colombo et al., 2014

> Evidence of GMCs sensitive to their galactic environments In very nearby galaxies: M51, M33, SMC

(Hughes et al. 2013)

M33 @ 840 kpc

CO(2-1) (IRAM – 30m) Resolution ~ 12 arcsec ~ 49 pc

Druard et al., 2014

NGC3627 @ 11 Mpc

CO(1-0) image (BIMA) Resolution ~ 6 arcsec ~ 320 pc

Helfer et al., 2003

CO(1-0) image (IRAM) 1.4 GHz contours (VLA) Resolution ~ 2 arcsec ~ 100 pc

Paladino et al., 2008

Typical size of a **GMC** in the Milky Way is 40 pc...

We need:

high spatial resolution to resolve different components

high spectral resolution to avoid blendings of regions with different velocities

NVSS 1.4 GHz image of the W49 complex

ALMA resolution

Band	Freq	FoV	min res	max res
	GHz	arcsec	arcsec	arcsec
1	31.3 - 45	145 - 135	13 - 9	0.14 - 0.1
2	67 - 90	91 - 68	6 - 4.5	0.07 - 0.05
3	84 - 116	72 - 52	44.9 - 3.6	0.05 - 0.038
4	125 - 163	49 - 37	3.3 - 2.5	0.035 - 0.027
6	211-275	29-22	2.0 - 11.1	0.021 - 0.016

Scale @ 10 Mpc (pc)	50 Mpc (pc)	
5	24	
2.5	12	
2	9	
1.3	7	
0.77	5	

Not yet available

In Band 2 DCO⁺ (1-0); DCN and NH₂D predicted from simulations in starburst or CR enhanced regions (Bayet 2010)

CO(1-0); HCN(1-0); HCO+(1-0)

DCO+ (2-1)

CO (2-1); HCN (3-2); HCO+ (3-2); SO₂

One of the most luminous star forming regions in the MW @ ~11 kpc

 $L \sim 10^{7.2} L_{\odot}$ (Sievers et al. 1991) $M_{gas} \sim 10^6 M_{\odot}$ (Miyawaki et al., 2009)

MUSCLE W49

Lines and continuum observations in 4 GHz bands
@ 220 and 230 GHz resolution: 2 arcsec to 0.8 arcsec More than 50 molecules (isotopologues) Have been identified.

CO(2-1) integrated flux 1.23553×10^5 Jy km s⁻¹ rms = 4.8 Jy beam⁻¹ km s⁻¹

W49A CO(2-1) SMA image Contours 3.6 cm free free emission

Comparison between thermal free-free and molecular emission

W49A CO(2-1) SMA image Contours 3.6 cm free free emission

W49A zoomed-in CO(2-1) SMA image Contours 3.6 cm free free emission

Galvàn-Madrid et al., 2014

Channel map

Integrated intensity map

Region size ~ 2.5′ → ~ 8 pc

Peak = 12.85 Jy Freq resolution = 1.2 km/s **Velocity intensity map**

Simulations of ALMA observations

Integrated intensity maps

Scaling the peak brightness, the observing frequency, and the channel width of W49A at various distances, observations with ALMA in Band 6 at resolution of 0.03", 5 min on source (rms ~ 3 mJy/beam) have been simulated

Simulations of ALMA observations

W49 @ 30 Mpc

Observation 30min on source (rms ~ 1mJy/beam) Spatial res ~ 4 pc

The CO line profile of the cloud is well visible even when the structure is unresolved.

Simulations of observations with ALMA

show how a GMC like the galactic W49A

can be seen in galaxies up to 30 Mpc.

The study of a large sample of GMCs in nearby galaxies can

help in understanding star formation processes.

