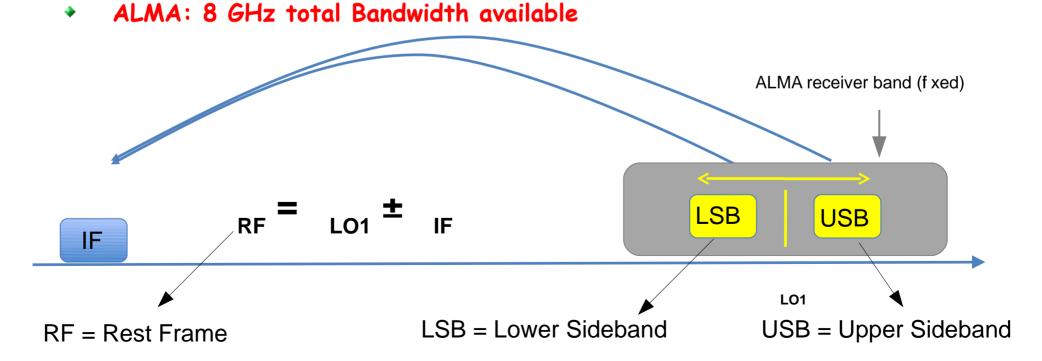
Cycle 2 ALMA Proposal Preparation: The Observing Tool (OT)

Viviana Casasola

Italian ALMA Regional Centre (ARC) INAF-Istituto di Radioastronomia

In collaboration with ARC's Team

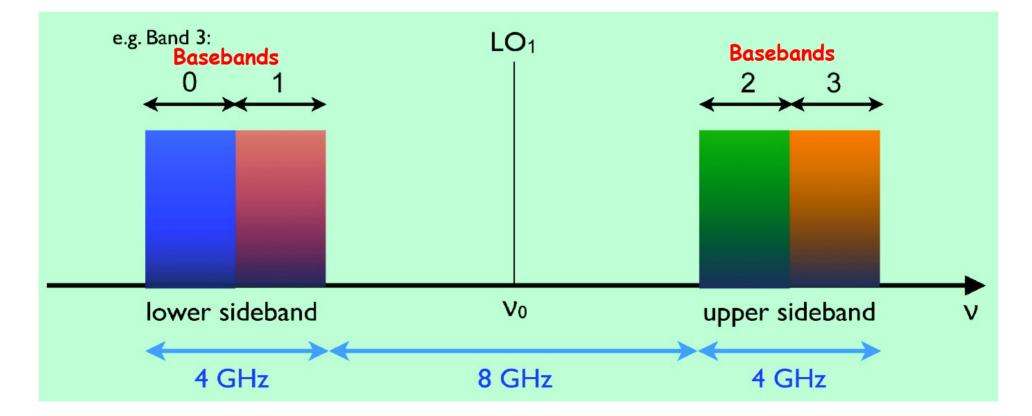

ALMA Proposal Preparation Day-Cycle 2 Bologna, November 21th, 2013

Outline

- Glossary
- ALMA Early Science Cycle 2 in the OT
- Phases of an ALMA Proposal (Phase I and Phase II)
- ALMA SCIENCE PORTAL

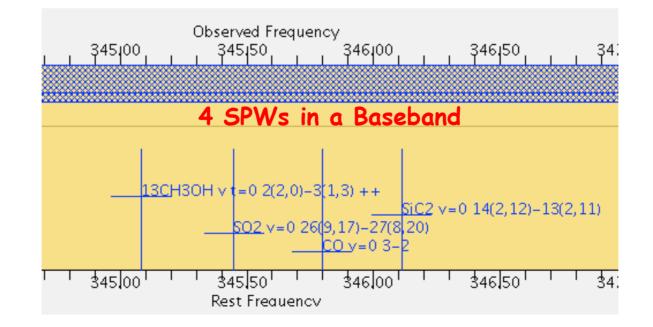
Sidebands

- Radio astronomy receivers have 2 sidebands: caused by mixing the sky signal with a local oscillator (LO)
- Sidebands are mapped to a lower frequency band
 - i. IF (Intermediate Frequency) range sets width and separation of sidebands
 - ii. Differs for different bands
- Varying LO1 causes the sidebands to move


Sidebands

ALMA allows both sidebands (LSB & USB) to be used

- ALMA has two kinds of receivers with two sidebands
 - i. Dual Sidebands (25B: B3, **B4**, B6, B7, **B8**)
 - ii. Double Sideband (DSB: B9)
 - iii. Both are present at *Early Science (ES) Cycle 2*


Basebands

- A 2 GHz wide portion of the available signal which is digitized at the antenna
- The 4 x 2 GHz-wide Basebands can be placed in one sideband or distributed between the 2 Sidebands
- The maximum available 8 GHz bandwidth is achieved when the 4 basebands are chosen not to overlap

Spectral Window (SPW)

- A Spectral Window is a frequency subrange of a Baseband
- ES Cycle 2: up to four SPWs per Baseband, with the same bandwidth and spectral resolution in each SPW, but the Basebands are independent
- SPWs can overlap in frequency

ALMA Correlator Modes

Two kinds of operation

- Time Division Mode (TDM)
 - i. Modest Frequency Resolution
 - ii. Continuum/wide spectral line observations
 - iii. SPW always 2-GHz wide with 128 or 256 channels
- Frequency Division Mode (FDM)
 - i. High Frequency Resolution
 - ii. High-resolution spectral line observations
 - iii. SPWs can be 58.6-1875 MHz wide with up to 7680 channels

	Dual Polariza	ation	Single Po		
Bandwidth (MHz)	Ch Spacing (MHz)	Number of channels	Ch Spacing (MHz)	Number of channels	Correlator mode
2000*	15.6	128	7.8125	256	TDM
58.6	0.0153	3840	0.00763	7680	FDM
117	0.0305	3840	0.0153	7680	FDM
234	0.061	3840	0.0305	7680	FDM
469	0.122	3840	0.061	7680	FDM
938	0.244	3840	0.122	7680	FDM
1875	0.488	3840	0.244	7680	FDM

* Spectral Resolution is 2 x the Channel Spacing

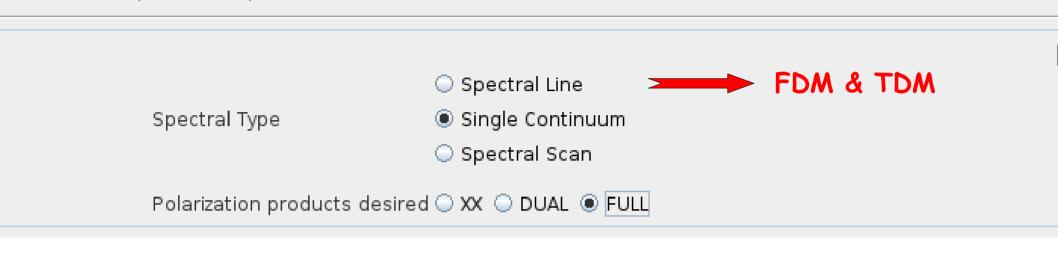
* The bandwidth is limited to 1875 MHz

	Dual Polariza	ation	Single Po			
Bandwidth (MHz)	Ch Spacing Number of (MHz) channels		Ch Spacing (MHz)	Number of channels	Correlat mode	or
2000*	15.6	128	7.8125	256	TDM	
58.6	0.0153	3840	0.00763	7680	FDM	
117	0.0305	3840	0.0153	7680	FDM	
234	0.061	3840	0.0305	7680	FDM	
469	0.122	3840	0.061	7680	FDM	
938	0.244	3840	0.122	7680	FDM	
1875	0.488	3840	0.244	7680	FDM	

* Spectral Resolution is 2 x the Channel Spacing

* The bandwidth is limited to 1875 MHz

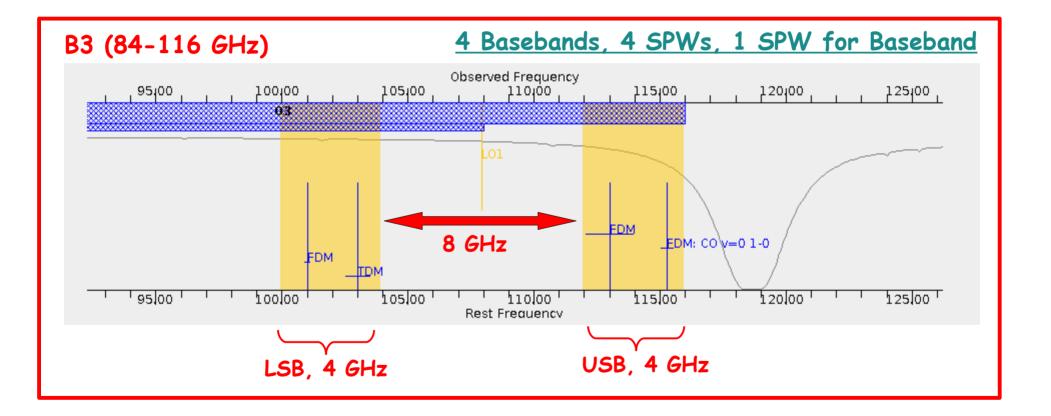
	Dual Polariz	ation	Single Po		
Bandwidth (MHz)	Ch Spacing Number of (MHz) channels		Ch Spacing (MHz)		
2000*	15.6	128	7.8125	256	TDM
58.6	0.0153	3840	0.00763	7680	FDM
117	0.0305	3840	0.0153	7680	FDM
234	0.061	3840	0.0305	7680	FDM
469	0.122	3840	0.061	7680	FDM
938	0.244	3840	0.122	7680	FDM
1875	0.488	3840	0.244	7680	FDM


* Spectral Resolution is 2 x the Channel Spacing

* The bandwidth is limited to 1875 MHz

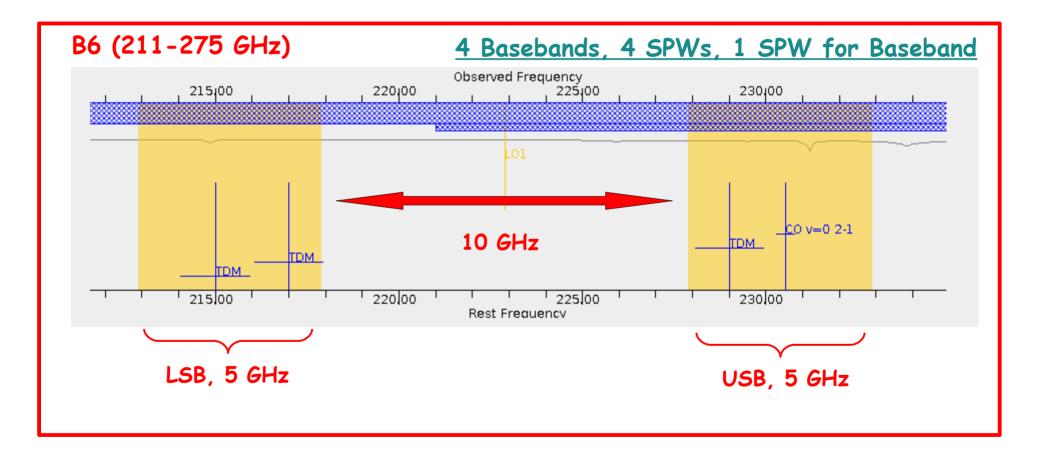
	Dual Polariz	ation	Single Po		
Bandwidth (MHz)	Ch Spacing (MHz)	Number of channels	Ch Spacing (MHz)	Number of channels	Correlator mode
2000	15.6	128	7.8125	256	TDM
58.6	0.0153	3840	0.00763	7680	FDM
117	0.0305	3840	0.0153	7680	FDM
234	0.061	3840	0.0305	7680	FDM
469	0.122	3840	0.061	7680	FDM
938	0.244	3840	0.122	7680	FDM
1875	0.488	3840	0.244	7680	FDM

Full Stokes polarization mode has half of the number of channels available for dual polarization

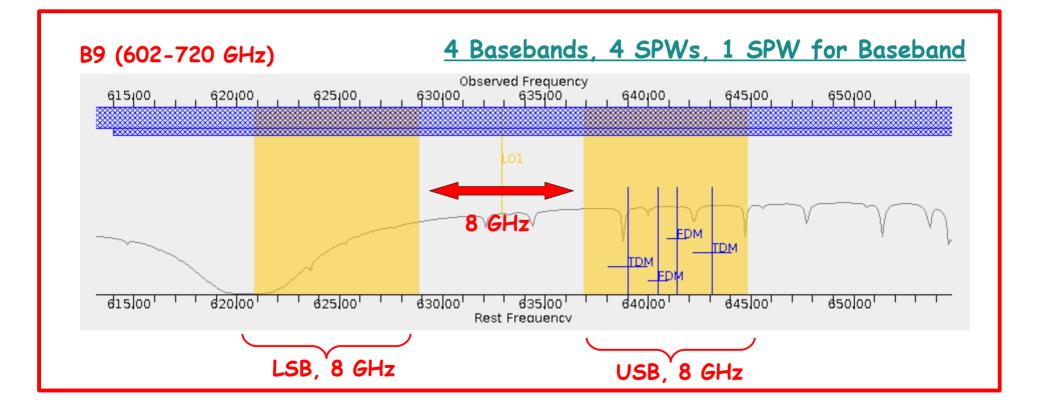

Spectral Type & Polarization

- Dual Polarization: Separate spectra for each linear parallel-hand polarization (XX, YY) of the input signal
- Single Polarization: A single input polarization (XX)
- Full Polarization: Full intrinsic polarization (XY, YX, XX, YY) only in continuum, in Band 3, 6 and 7, and only for specific frequency settings present in the OT

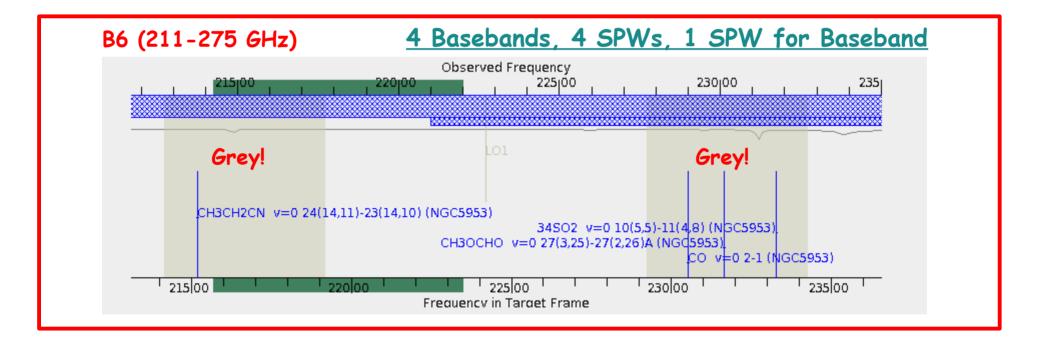
2SB receivers (B3, B4, B6, B7, B8)


- Sidebands are separated in the receiver
- Sidebands are generally 4 GHz wide and separated by 8 GHz

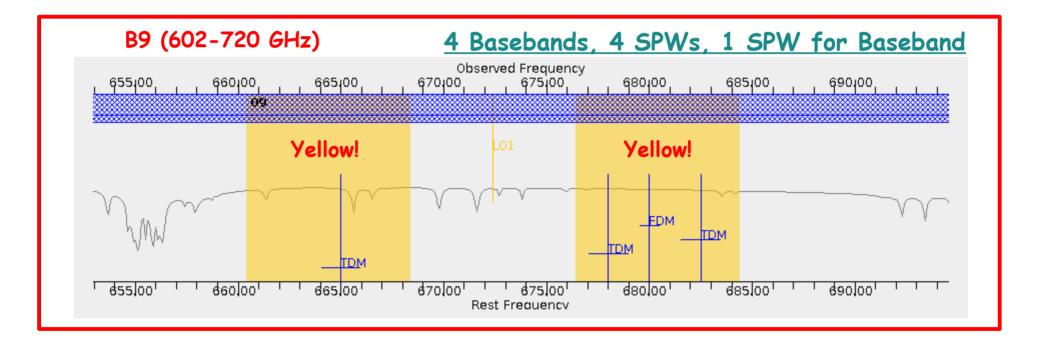
Observations of spectral lines within about 0.2 GHz of a Receiver Band edge are not possible at present.


2SB receivers (B3, B4, B6, B7, B8)

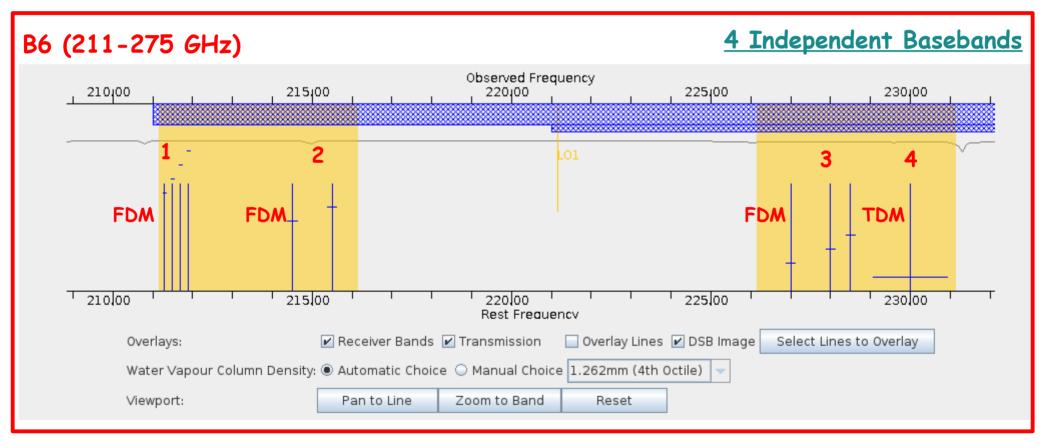
But in Band 6 sidebands are 5 GHz wide and separated by 10 GHz


DSB receivers (B9)

- Sidebands are separated in the correlator
- Sidebands are 8 GHz wide and separated by 8 GHz


Basebands Constraints (1)

- 2SB receivers (B3, B4, B6, B7, B8)
 - i. All (for a maximum of 4 Basebands) in USB or LSB
 - ii. 2 in USB and 2 in LSB
 - iii. A 3/1 split is not possible


Basebands Constraints (2)

DSB receivers (B9): A 3/1 split is possible

The Correlator Resources

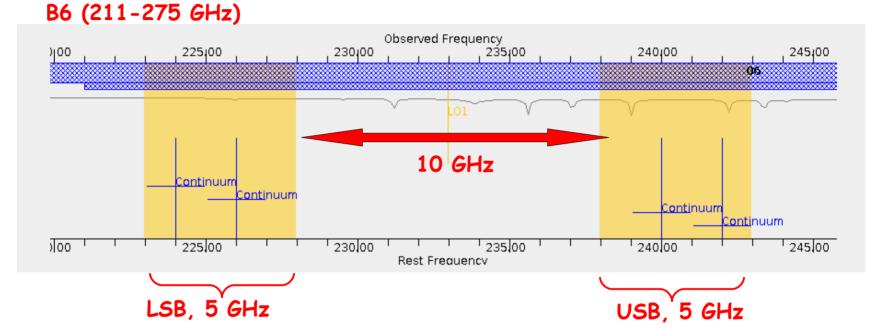
- A fraction of the Correlator Resources is assigned to each SPW
- The fractions 1, 1/2 and 1/4 within a Baseband are allowed
- The sum of the these fractions within a Baseband must be less or equal to 1

Spectral Averaging (1)

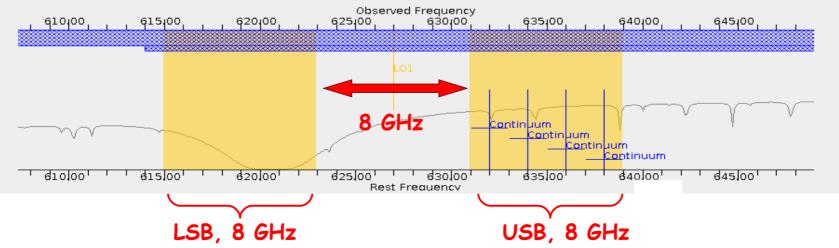
- Cycle 2 allows the data to be pre-smoothed in the correlator
- Averaging (or binning) spectral channels in powers of 2 up to 16
- Cycle 2: Max data rate = 60 MB/s, average data rate = 6 MB/s
- If data rate > 12 MB/s: the user musts technically justify this!

Spectral Line				Data Ra	to - 5 4	MB/s ?-		
Baseband-1					10 - 0.9			
Fraction	Center Freq (Rest)	Center Freq (Sky)	Transition	Bandwidth, Resolution (smoothed)	Spec. Avg.	Representative Window		
1/4	211.30000 GHz	211.30000 GHz		58.594 MHz(83 km/s), 61.035 kHz(0.087 km/s)	1			
1/4	211.50000 GHz	211.50000 GHz		58.594 MHz(83 km/s), 61.035 kHz(0.087 km/s)	1	0		
1/4	211.70000 GHz	211.70000 GHz		58.594 MHz(83 km/s), 61.035 kHz(0.086 km/s)	1	0		
1/4	211.90000 GHz	211.90000 GHz		58.594 MHz(83 km/s), 61.035 kHz(0.086 km/s)	1	0		
Select Lines to Observe in Baseband-1 Add Delete								
Bacanann./								

Spectral Line									
Baseband-1					Data Rat	e = 2.7	MB/s ?-		
Fraction	Center Freq (Rest)	Center Freq (Sky)	Transition	Bandwidth, Resolution (smoothed)		Spec. Avg.	Representative Window		
1/4	211.30000 GHz	211.30000 GHz		58.594 MHz(83 km/s), 70.557 kHz(0.100 km/s)		2	•		
1/4	211.50000 GHz	211.50000 GHz		58.594 MHz(83 km/s), 70.557 kHz(0.100 km/s)		2	0		
1/4	211.70000 GHz	211.70000 GHz		58.594 MHz(83 km/s), 70.557 kHz(0.100 km/s)		2	\circ		
1/4	211.90000 GHz	211.90000 GHz		58.594 MHz(83 km/s), 70.557 kHz(0.100 km/s)		2	0		
Select Lines	Select Lines to Observe in Baseband-1 Add Delete								

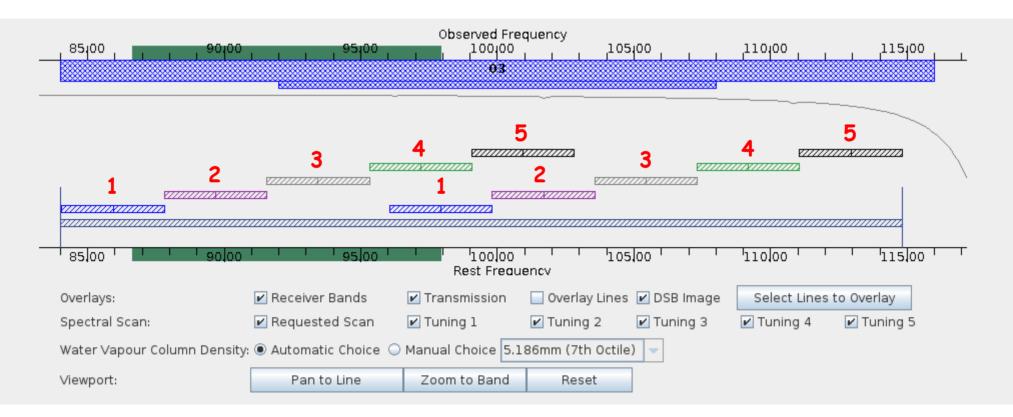

Spectral Averaging (2)

• Independent spectral averaging factor within the same Baseband


Spectral Line				Note De			
				Data Ra	re = 2.3	3 MB/s ?-	
Baseband-1							
Fraction	Center Freq (Rest)	Center Freq (Sky)	Transition	Bandwidth, Resolution (smoothed)	Spec. Avg.	Representative Window	
1/4		211.30000 GHz		58.594 MHz(83 km/s), 61.035 kHz(0.087 km/s)	1	•	
1/4	211.50000 GHz	211.50000 GHz		58.594 MHz(83 km/s), 70.557 kHz(0.100 km/s)	2	Ô III	
	211.70000 GHz	211.70000 GHz		58.594 MHz(83 km/s), 244.019 kHz(0.346 km/s)	8	0	
1/4	211.90000 GHz	211.90000 GHz		58.594 MHz(83 km/s), 488.281 kHz(0.691 km/s)	16	0	
Select Lines to Observe in Baseband-1 Add Delete							

Single Continuum Observations

- It covers the maximum possible bandwidth with the lowest possible spectral resolution
- Only define a single frequency



B9 (602-720 GHz)

Spectral Scan Observations

- The OT automatically sets up a set of contiguous SPWs to cover a specific frequency range
- No more than 5 frequency tunings in a Science Goal
- 4 SPWs per tuning --> 4 SPWs X 5 tunings = 20 SPWs
- 4 Correlator Modes + Spectral Averaging

Phases of Proposal Submission

2 Phases:

- Phase I: Proposal Submission ٠
- Phase II: Submission of Observing Program ٠

The Observing Tool (OT) is used for both phases:

- Phase I
 Fill in PI, co-Is, etc ... (ALL REGISTERED)
 Attach scientific justification (single PDF)
 Define Science Goals
 Submit

Phase II { If your project has been approved for scheduling, generate <u>Scheduling Blocks</u> from Science Goals and submit

Phase I

Science Goal (SG)

- Scientific requirements of the observations
- A user must enter:
 - i. Science Targets
 - ii. Spectral line and/or continuum frequencies
 - iii. Angular resolution, largest angular scale
 - iv. Required sensitivity
- Cycle 2: These in no restriction on the number of SGs

Phase I

Source Restrictions

- Sources can be designed by fixed RA and Dec, or can include moving targets (NO Sun observations)
- Sources selected:
 - i. by specifying a Single Rectangular Field (= Mosaic)
 - ii. by specifying Individual Pointings:

Pointing Pattern or Custom Mosaic

- The total number of pointings in a SG must be ≤ 150
 ACA pointings do not count against the 150 pointing SG limit
- All pointings must lie within 10 deg of each other in a SG

<u>Rectangular Field (= Mosaic) Constraints</u>

- One Mosaic is allowed per SG
- A single Spectral Setup (placement and properties SPWs)
- If ACA observations are requested as part of a mosaic, then a corresponding 7-m Array mosaic will also be observed

Individual Pointings Constraints

- A single Spectral Setup (placement and properties SPWs)
- No more than 5 separate velocities that fall within the same Receiver Band

Proposal Preparation: Cycle 2 News

- A single PDF file: limited to 4 pages (NOT 5 pages)
 LateX template recommended, not mandatory
- Technical Justification for each SG is entered in the OT: everything must be justified!

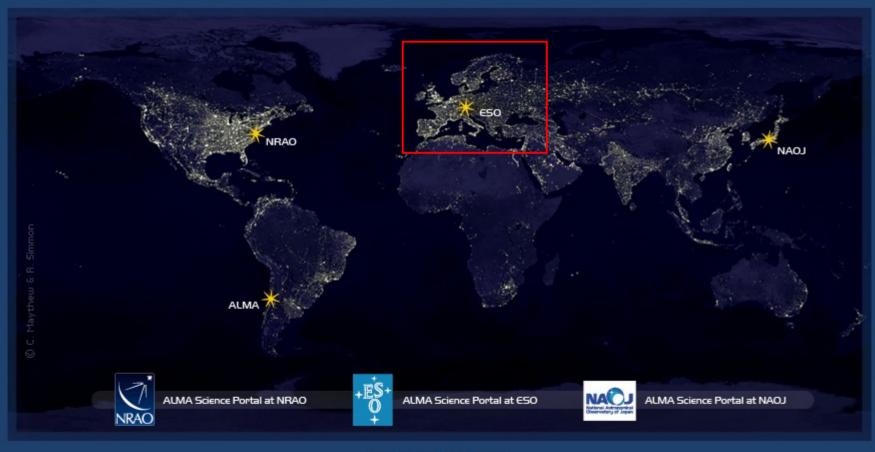
ALMA: Instrument in Sensitivity

The OT reports an estimated time based on likely weather:
 Observations will proceed until requested sensitivity is reached

- Calibration sources
 - i. The observatory will provide all necessary calibration: Choose "system-defined" calibration <u>STRONGLY RECOMMENDED</u>
 - ii. Own calibrators can be requested:
 You must fully justify it in the proposal!

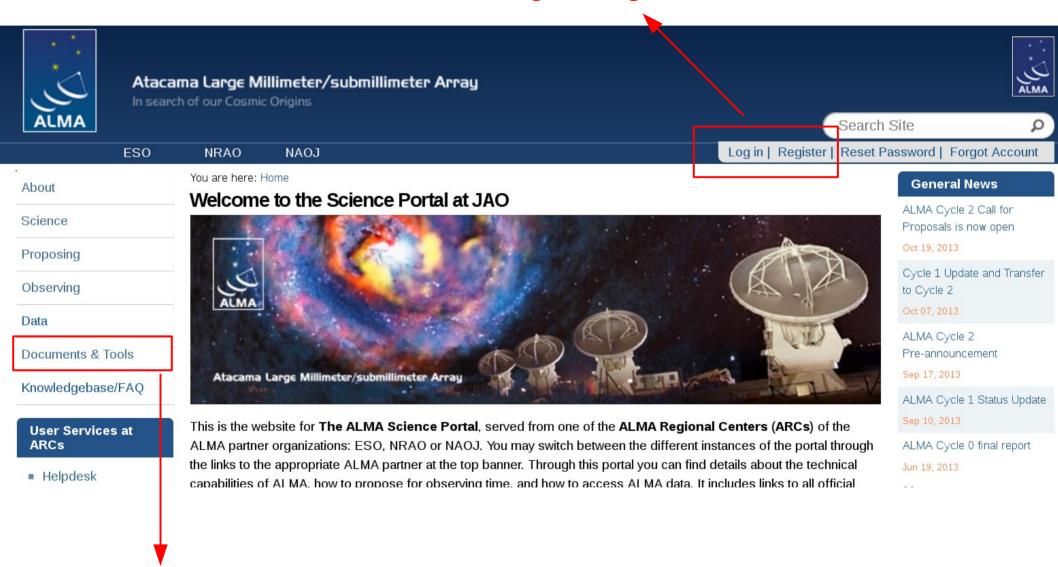
ΟΤ

- The OT is a Java application
 - i. Java 6 or 7 must be installed on your computer
- Download and run locally
 - i. Web Start (recommended) and Tarball versions
- Internet connection required intermittently
 - i. PI/co-Is information from user database
 - ii. Source catalogues and images servers
 - iii. Spectral line catalogues
 - iv. Submission


ALMA SCIENCE PORTAL ----> http://almascience.org

The interaction between science users and ALMA is done through the ARCs. The ALMA Science Portal allows this interaction.

Atacama Large Millimeter/submillimeter Array In search of our Cosmic Origins


Please select your preferred ALMA Regional Centre (ARC). Alternatively you will be redirected in 3 seconds to the closest ARC which in your case is at 📑

Copyright © 2011 ALMA

ALMA SCIENCE PORTAL @ ESO

Login & Registration

OT