Cycle 1 ALMA Proposal Preparation: The Observing Tool (OT)

Viviana Casasola

INAF-Istituto di Radioastronomia Italian ALMA Regional Centre (ARC)

In collaboration with ARC's Team

Tutorials for ALMA - Cycle 1 Bologna, June 6th, 2012

Outline

- Glossary
- Early Science Cycle-1: Constraints
- Phases of Proposal Submission (Phase I and Phase II)
- ALMA SCIENCE PORTAL
- ALMA Observing Tool Structure

Sidebands

- Most radio astronomy receivers have 2 sidebands: caused by mixing the sky signal with a local oscillator (LO)
- Sidebands are mapped to a lower frequency band
 - i. IF (Intermediate Frequency) range sets width and separation of sidebands
 - ii. Differs for different bands
- Varying LO1 causes the sidebands to move

Sidebands

ALMA usually allows both sidebands (LSB & USB) to be used

- ALMA has two kinds of receivers with two sidebands
 - i. Dual Sidebands (25B: B3, B6, and B7)
 - ii. Double Sideband (DSB: B9)
 - iii. Both are present at *Early Science (ES) Cycle 1* (also at *ES Cycle 0*)

Basebands

- A 2 GHz wide portion of the available signal which is digitized at the antenna
- The 4 x 2 GHz-wide Basebands (0, 1, 2, and 3) can be placed in one sideband or distributed between the 2 Sidebands
- The maximum available 8 GHz bandwidth is achieved when the 4 basebands are chosen not to overlap

Spectral Window (SPW)

• A Spectral Window is a frequency subrange of a Baseband

 ES Cycle 1: up to four Spectral Windows, one per Baseband, and each Spectral Window can have a different Bandwidth and Spectral Resolution: Independent Basebands

ES Cycle O allowed one Spectral Window per Baseband <u>with identical</u> <u>Bandwidth and Spectral Resolution</u>

ALMA ES Correlator Modes

Two kinds of operation

- Time Division Mode (TDM)
 - i. Modest Frequency Resolution
 - ii. Continuum/wide spectral line observations
 - iii. SPW always 2-GHz wide with 128-256 channels
- Frequency Division Mode (FDM)
 - i. High Frequency Resolution
 - ii. High-resolution spectral line observations
 - iii. SPW can be 58.6-1875 MHz wide with up to 7680 channels

ALMA ES Cycle 1 Correlator Modes

	Dual Polariza	ation	Single Po		
Bandwidth (MHz)	Ch Spacing [*] (MHz)	Number of channels	Ch Spacing (MHz)	Number of channels	Correlator mode
2000*	15.6	128	7.8125	256	TDM
58.6	0.0153	3840	0.00763	7680	FDM
117	0.0305	3840	0.0153	7680	FDM
234	0.061	3840	0.0305	7680	FDM
469	0.122	3840	0.061	7680	FDM
938	0.244	3840	0.122	7680	FDM
1875	0.488	3840	0.244	7680	FDM

* Spectral Resolution is 2 x the Channel Spacing

* The bandwidth is limited to 1875 MHz

ALMA ES Cycle 1 Correlator Modes

	Dual Polarization		Single Po			
Bandwidth (MHz)	Ch Spacing [*] (MHz)	Number of channels	Ch Spacing (MHz)	Number of channels	Correlat mode	tor
2000*	15.6	128	7.8125	256	TDM	
58.6	0.0153	3840	0.00763	7680	FDM	
117	0.0305	3840	0.0153	7680	FDM	
234	0.061	3840	0.0305	7680	FDM	
469	0.122	3840	0.061	7680	FDM	
938	0.244	3840	0.122	7680	FDM	
1875	0.488	3840	0.244	7680	FDM	

* Spectral Resolution is 2 x the Channel Spacing

* The bandwidth is limited to 1875 MHz

ALMA ES Cycle 1 Correlator Modes

	Dual Polariza	ation	Single Po		
Bandwidth (MHz)	Ch Spacing* (MHz)	Number of channels	Ch Spacing (MHz)	Number of channels	Correlato mode
2000*	15.6	128	7.8125	256	TDM
58.6	0.0153	3840	0.00763	7680	FDM
117	0.0305	3840	0.0153	7680	FDM
234	0.061	3840	0.0305	7680	FDM
469	0.122	3840	0.061	7680	FDM
938	0.244	3840	0.122	7680	FDM
1875	0.488	3840	0.244	7680	FDM

* Spectral Resolution is 2 x the Channel Spacing

* The bandwidth is limited to 1875 MHz

2SB receivers (B3, B6, B7)

- Sidebands are separated in the receiver
- Sidebands are generally 4 GHz wide and separated by 8 GHz

B7 (275-373 GHz), same properties

Observations of spectral lines within about 0.2 GHz of a Band edge are not possible at present.

2SB receiver (B6)

But in Band 6 sidebands are 5 GHz wide and separated by 10 GHz

DSB receivers (B9)

- Sidebands are separated in the correlator
- Sidebands are 8 GHz wide and separated by 8 GHz

Spectral Window constraints for Cycle 1

- 2SB receivers (B3, B6, and B7)
 - i. All (for a maximum of 4 Spectral Windows) in USB or LSB
 - ii. 2 in USB and 2 in LSB
 - iii. A 3/1 split is not possible

SPWs can overlap in frequency.

Spectral Window constraints for Cycle 1

DSB receivers (B9): A 3/1 split is possible

SPWs can overlap in frequency.

Single Continuum Observations

- It covers the maximum possible bandwidth with the lowest possible spectral resolution
- Only define a single frequency

Phases of Proposal Submission

2 Phases:

- Phase I: Proposal Submission ٠
- Phase II: Submission of Observing Program ٠

The Observing Tool (OT) is used for both phases:

- Phase I
 Fill in PI, co-PIs, etc ... (ALL ALREADY REGISTERED)
 Attach scientific/technical justification (single PDF)
 Define Science Goals
 Submit

Phase II { If your project has been approved for scheduling, generate <u>Scheduling Blocks</u> from Science Goals and submit

Phase I

Science Goal (SG)

- Scientific requirements of the observations
- A user must enter:
 - i. Science Targets
 - ii. Spectral line and/or continuum frequencies
 - iii. Angular resolution, largest angular scale
 - iv. Required sensitivity

Science Goal Constraints

- Maximum of 5 Science Goals per proposal
- Sources can be designed by fixed RA and Dec, or can include moving targets (including the planets, their moons, asteroids and comets)
- Sources selected:
 - i. by specifying one or more source positions (= Multiple Pointings)
 - ii. by specifying a single Rectangular Field (= Mosaic)
- The total number of pointings in a proposal must be less than or equal to 150. The ACA pointings do not count against the 150 pointing proposal limit.

<u>Rectangular Field (= Mosaic) Constraints</u>

- One Rectangular Field is allowed per Science Goal: at most 5 Rectangular Fields are allowed per proposal
- A single Mosaic can have up to 150 pointings
- If ACA observations are requested as part of a mosaic, then a corresponding ACA mosaic will also be observed

<u>Multiple Sources Constraints</u>

Users can request to observe up to 15 individual sources in a single Science Goal, provided that the sources:

- are not separated by more than 15 degrees on the sky
- can be observed with one Spectral Setup (placement and properties SPWs)
- can be observed with no more than 5 separate velocities that fall within the same Receiver Band

<u>Offset Pointings Constraints</u>

Offsets can be specified for all sources within a Science Goal, within 15 degrees separation, and the total number of positions in the proposal must be less than or equal to 150.

- If ACA observations are requested for the SG, then the corresponding ACA observations will be obtained for each source
- A set of N offset pointings will take longer to observe than N sources at the same sky positions: If the use of offset pointings is not well justified, then the proposal may be rejected on technical grounds

What you don't ask for

 Time on source: The OT reports an estimated time based on likely weather: Observations will proceed until sensitivity is reached

- Calibration sources
 - i. The observatory will provide all necessary calibration: Choose "system-defined" calibration <u>STRONGLY RECOMMENDED</u>
 - ii. Own calibrators can be requested: You must fully justify it in the proposal!

ΟΤ

- The OT is a Java application
 - i. Java 6 must be installed on your computer
- Download and run locally
 - i. Web Start (recommended) and Tarball versions
- Internet connection required intermittently
 - i. PI/co-PIs information from user database
 - ii. Source catalogues and images servers
 - iii. Spectral line catalogues
 - iv. Submission

ALMA SCIENCE PORTAL ----> http://almascience.org

The interaction between science users and ALMA is done through the ARCs. The ALMA Science Portal allows this interaction.

Atacama Large Millimeter/submillimeter Array In search of our Cosmic Origins

Please select your preferred ALMA Regional Centre (ARC). Alternatively you will be redirected in 3 seconds to the closest ARC which in your case is at 📑

Copyright © 2011 ALMA

ALMA SCIENCE PORTAL @ ESO

Login & Registration

The OT

Atacama Large Millimeter/submillimeter Array

In search of our Cosmic Origins

Search Site

OT structure

	Perspective 2
	0
Project Structure	G Editors
Proposal Program	Spectral Spatial High resolution imaging of X-ray hot spot
Unsubmitted Proposal	Principal Investigator
High resolution imaging of X-ray hot spot Proposal Panned Observing Panned Observing Panned Observing Panel Panel Proposal Setup Ocalibration Setup Control and Performance Proposal Panel	Image: The second se
Overview Contextual Help 1. Please ensure you and your co-Is are registered with th ALMA Science Portal	Overview Panel Phase I: Science Proposal he Validate Science Science

Project navigation and Science Goal

- Navigate through project using the Project Tree
- Two tabs
 - i. Proposal (Phase I)
 - ii. Program (Phase II)

The OT divides the observing info of a project into **SGs**

- SG is a container of
 - i. <u>General</u> description of the SG
- ii. the <u>Field Setup</u> to define the observing targets
- iii. The <u>Calibration Setup</u>
- iv. The <u>Spectral Setup</u> to define the frequency range and correlator configuration
- v. The <u>Control and Performance</u> parameters to define the sensitivity and resolution goals

The ALMA Template Library

emplate library. Turn the keys on the JTree below & read the descriptions (read-only)	
♀ ➡ Template library. Turn the keys on the JTree below & read the descriptions	
e Proposal	
Planned Observing	
P III B3 spectral sweep CO (9−8): COSMOS SMGs	
- 🗋 General	
— 🗋 Field Setup	
— 🗋 Spectral Setup	
– 🗋 Calibration Setup	
Control and Performance	
🕶 🎯 B7 continuum: COSMOS SMGs	
∽ 🧟 B7 CO(9-8): Cosmic Eyelash (z=2.326)	
🖕 🧟 B9 continuum: Cosmic Eyelash (z=2.326)	
🖕 🧟 B3 spectral sweep: PKS1830-211 (z=0.9)	
— 🗋 General	
- 🗋 Field Setup	
— 🗋 Spectral Setup	
– 🗋 Calibration Setup	
Control and Performance	
🖙 🧟 B3 continuum: GRB ToO: days 0 to 14	
🖙 🧟 B6 continuum: GRB ToO: days 0 to 14	
🖙 🧟 B7 continuum: GRB ToO: days 0 to 14	
🗢 🥮 B6 continuum: GRB ToO: day 17	
🗢 🥮 B3 continuum: GRB ToO: day 30	
∽ 🥨 B6 12CO (2−1): NGC3256 mosaic	
🖕 🍘 B6 13CO (2-1): NGC3256	

It provides a set of Science Gaols that cover different proposal types.

Possibility to drag and copy the full Science Goal!

The Field Setup

MS1512-cB58 CI1053-arc A2218	i-arc					
Source						
						2 -
Source Name	MS1512-	·cB58			Resolve	
Choose a Solar Syst	em Object? 🔲	Name o	f object Unspecifie	ed 🗸	SIMBAD +	NED /
Source Coordinates	System J RA Dec	2000 ▼ Sexagesi display? 15:14:22.4400 36:36:20.700	mal Parall	ax 0.00000 ma A 0.00000 ma ec 0.00000 ma	s v s/yr v s/yr v	
Source Velocity	0.000	km/s 🔻 h	el 🔽 z <u>0.0000</u>	Doppler Type	OPTICAL -	
Target Type	Multip	le single point fields	🗧 🔿 1 rectangular	field		
Expected Source Properties						
Field Center Coordinates	Peak Continuu Peak Line Flux Polarisation Pe Line Width	m Flux Density per E Density per Beam rcentage	leam 0.00000 0.00000 0.0 0.00000	Jy V Jy V % km/s V		
Field Center Coordinates						? -
	Pointi	ngPattern : Offset	~			
	Offse	t Unit arcsec	-			
	#Poin	tings 1				
		RA [arcsec]	Dec [arcse	c]		
	0.00	000	0.00000			
		Add	Delete			
	Add Source	Load from File	Delete Source	Delete All Sources		

The Visual Spatial Editor

Downloads and displays an image of the sky

- i. Libraries provided by JSky project
- ii. Local images files (FITS)

Multiple Pointings

3:21.90 4:12.08 2:30.93

It is not possible to perform a mixture of Multiple Pointings and Mosaic

Mosaic

Spectral Setup

	Spectral Type			
				?
			Spectral Line	
	<u>></u>	Spectral Ty	oe O Single Continuum	
		_	Spectral Scan	
	>	Polarization	Products desired 🔾 XX 💿 DUAL	
	Spectral Line			
	Baseband-0			?
ſ	Fraction Center Freq Center	Freq Transition	Bandwidth, Resolution (Hanning	moothed)
Baseband_0	1(Full) 115.27120 G 114.836	38 G CO v=0 1-0	58.594 MHz(153 km/s), 30.518 kHz(0.0	80 km/s)
Baseband-1: {	Select Lines to Observe in Base Baseband-1 1(Full) 113.26726 G 112.840 Select Lines to Observe in Base Baseband-2	band-0 Add	Delete 58.594 MHz(156 km/s), 30.518 kHz(0.0 Delete	81 km/s)
Baseband-2: one SPW	1(Full) 103.22940 G 102.840 Select Lines to Observe in Base Baseband-3	00 G Manual window	58.594 MHz(171 km/s), 30.518 kHz(0.0	89 km/s)
Baseband-3: one SPW	1(Full) 101.22183 G 100.840 Select Lines to Observe in Base	00 G Manual window	58.594 MHz(174 km/s), 30.518 kHz(0.0	91 km/s)
	Representative Frequency The representative frequency is us observing time and to set the size not fall in the centre of the chosen shown in the targets table below.	ed in conjunction with the of the antenna beam shapectral window, its free	ne sensitivity entered of the 'Control and Perfor own in the 'Spectro visual' editor. If the transition quency set changed here. The sky equivale	ivity Calculator mance' page to estimate the required n you are most interested in does nts of the representative frequency are
	<u></u>		115.2712 GHz 🗸	

Spectral Line Selection Tool

● ○ ○ Select Spectral Lines								
Species Filter	Transitions matching your filter se	ttinas						
	Transition A	Description	Bact Fraguenou 🏠	Sky Fraguancy	Upper state Energy	Louas Intensity	Cii2	Catalog
<u>n</u>		Cyapoacetylene		221 255 CH7		Lovas Intensity	8 2 4 4 8 4 D ²	Offling
Include description	HC3Nv7 = 2 J = 25 = 24, I = 0	Cyanoacetylene	228.898.007	221.233 GHz	783 32 K	23	1 342 64 D ²	Offline
	DNC 3-2	Everyanida	228.01 CH-	221.320 012	21.07.4	23	22 27 01 D ²	Offline
ALMA Band	H13CCCN1=26=25	Cyanoacetylere	220.91 002	221.54 GHZ	148 51 K	20	7362.07.D ²	Offline
	H(30)g	Hydrogen Recombination Line	231 901 CHz	224 232 CHz	140.51 K	20	.7 502.01 0	Offline
	He(30)a	Helium Recombination Line	231.995 GHz	224.323 GHz				Offline
1 2 3 4 5 6 7 8 9 10	HCCCH0 22(2.21)-22(1.22)	2-Propynal	232.328 GHz	224.645 GHz	125.28 K	2	.8 20.71 D ²	Offline
Sky Frequency (CHz)								
Sky Frequency (GFI2)								
Min 31.3 Max 950 -								
Receiver/Back End Configuration								
Hide unobservable lines								
Filtering unobservable lines								
Maximum Unper-state Energy (K)								
Maximum opper-state Energy (k)								
0 20 40 60 80 100∞		_ - - 						
		atalogue se	dectrai IIn	е аатара	ise			
Molecule Filter / Environment								
Show all atoms and molecules 🗸								
Can't find the transition you're looking		i Onlina	coarch of	millions of	cnactral lina	trancition	nc	
for in the offline pool? Find more in the		I. Onine	seurchor		spectruinne	Industrio	115	
online Splatalogue.					•			
Find More		ii Tha O	Thacacm	allan intan	nalvancian			
		II. The U	i nus u sine	aller mien	nui version			
Reset Filters								
								•
				Add to Selected Transiti	ions			
	A T							
	selected transitions							

The Visual Spectral Editor

Calibration Setup

The "System-defined calibration" is STRONGLY recommended

Goal Calibrators

Select User-defined calibring on to choose your own calibrators, or System-defined calibration to let the system automatically select the calibrators to be observed. We **STRONGLY** suggest that you leave this choice at 'System-defined' - the Observatory will ensure that suitable calibrators are selected.

System-defined calibration

User-defined calibration

- When first selected, the table shows a reasonable set of calibrators to include.
- Dynamic Calibrators are found by a source catalogue query executed at project execution time. Edit the query with Edit Criteria....
- Fixed Calibrators are calibrators specified now, at project creation time. Specify which calibrator should be observed with Edit Target....

Add Dynamic Calibrator...

Add Fixed Calibrator...

Delete Selected Calibration

Calibration Intent	Target Type	Source Name	RA	Dec	
Pointing	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Atmospheric	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Amplitude	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Pointing	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Bandpass	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Bandpass	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Pointing	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Phase	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Bandpass	Dynamic Calibrator		17:56:21.287 ± 20.0	-21:57:21.877 ± 20	Edit Criteria
Amplitude	Fixed Target	Uranus	N/A	N/A	Edit Target

1

Sensitivity Calculator

Control and Performance

Control and	Performance			2
Configurati	ion Information			•
(Antenna Beamsize (1.2 * λ / D)	12m 53.848 arcsec	7m 92.310 arcsec	
	M	ost Extended Configuration	Most Compact Configuration	2 config.
J	Longest baseline (L _{max})	1.091 km	165.6 m	Ī
l 1	Synthesized beamsize (λ/L_{max})	0.494 arcsec	3.252 arcsec	
	Shortest baseline (L _{min})	43.3 m	15.1 m	
	Maximum recoverable scale $(0.6\lambda/L_{min})$	7.462 arcsec	21.396 arcsec	
Desired Pe	rformance			
Desir	ed Angular Resolution	2.0 arcsec	-	
Large	est Angular Structure in source	O Point Source I Exten	ded Source 100.00000	arcsec 💌
Desir	red mosaic sensitivity	20.0 mJy 💌	equivalent to 0.46009	К 💌
Bandy	width used for Sensitivity	FinestResolution	 Frequency Width 0.0152 	259 MHz
Do yo	ou request complementary ACA Observation	is? 🖲 Yes 🔾 No	Suggest	ACA suggestion
Scien	ce goal integration time estimate		Time Estimate	See next talks
Does is ind	your setup need more time than licated by the time estimate?	🔾 Yes 🖲 No	\mathbf{A}	
ls this (occu	s observing time constrained Itations, coordinated observing,)?	🔾 Yes 🖲 No		
				1

Requested rms Representative Freq.

Configuration Total number of pointings

Calibration

Achieved Sensitivities

ACA + TP Time

To	ALMA OT - Information	X
i)	Estimated time	
ł	Requested sensitivity Bandwidth used for sensitivity Representative frequency (sky, first source) Precipitable water vapour (first source)	20.0000 mJy 0.200 km/s 114.84 GHz 5.186mm (7th Octile)
{	ALMA 12m Array Array configuration Time on source per pointing Total number of pointings (all sources) Total time on source Total time on calibrators Total overheads Total 12m array time (inc. calibration & overheads)	C32-2 2.96 min 27 1.33 h 25.90 min 35.00 min 2.35 h
{	Calibration Breakdown Estimated number of tunings required 3 x Bandpass (inc. AtmosphericCal) 18 x Pointing 3 x Amplitude (inc. AtmosphericCal) 23 x Phase 21 x Atmospheric Additonal calibration overheads	1 6.92 min 5.40 min 1.41 min 3.07 min 9.10 min 14.00 min
{	Achievable Sensitivity Line@101 with 12m Array Line@103 with 12m Array Line@113 with 12m Array CO v=0 1-0 with 12m Array Atacama Compact Array and Total Power Array ALMA 12m array multiplication factor Total ACA + TP time	12.0012 mJy 12.1515 mJy 15.4209 mJy 20.0000 mJy 3.0 7.05 h
ι	Estimated total time for science goal	9.40 h

Time on source Time on calibrators Total overheads

Summary Information, Validation and Submission

- Once the proposal is complete, various pieces of summary info can be obtained:
 - i. SG summaries
 - ii. Proposal summary
 - iii. Technical Assessment Flag sheet
 - iv. Whole Proposal
- Validation: see Feedback Panel.
 If the validation is not successful, submission will fail
- Submission and Resubmission: an email will be sent to all investigators

The OT may validate observations not compilant with Cycle 1 capabilities: these proposals will be rejected!

Documentation & Help

ALMA SCIENCE PORTAL:

OT User Manual

OT Video Tutorial

For any questions on OT, ALMA data reduction, ... contact the ALMA Helpdesk @ the ALMA SCIENCE PORTAL:

http://almascience.org

submitting a ticket to the ALMA Helpdesk (and specifying your preferred ARC)

ITALIAN ARC

Web: http://www.alma.inaf.it Email: help-desk@ira.inaf.it

Enjoy your *Cycle 1* ALMA proposal!

Deadline: 15:00 UT on July 12, 2012