Outflow Structure on small scales in high-mass protostars

Luca Moscadelli

Alvaro Sánchez-Monge Ciriaco Goddi Jing Jing Li Alberto Sanna Riccardo Cesaroni Mark Reid

Low-mass (~1 M_o) Star Formation: Disk+Jet system Magnetocentrifugally accelerated wind

HH30

1000 AU

False-color (V, R, I) deconvoled HST WFPC2:Emission line jet, continuum reflection nebulae,dark lane.(Burrows et al. 1996)

Adapted from Blandford & Payne 1982

High-mass stars "switch on" still accreting

Impact of radiation pressure and photoionization (thermal pressure from HII regions) on the accretion of circumstellar gas

- Do accretion disks exists ?
- 1) photoevaporated by the intense stellar UV Radiation
- 2) if massive, fragmented by gravitational instabilities
- 3) destroyed by tidal interactions with (stellar cluster) members
- From Observations:
- A few B-type YSOs with disks, but no disks towards O-type YSOs A few thermal jets towards high-mass YSOs (VLA, rms ~ 0.3 mJy)
- Are outflows driven by radiation pressure and/or stellar winds ?
- Does outflow collimation decrease with protostellar mass or age?

Adapted from Beuther & Shepherd 05

Observations of high-mass YSOs are challenging:

- High extinction => Optical and NIR impossible
- Formation in clusters => Confusion/crowding
- Declining IMF and Rapid evolution: Large Distances (> 1 kpc)

- 1) VLBI of Water Masers (beam ~ 1 mas)
- 2) JVLA multi-frequency observations of radio continuum (beam $\sim 0.1^{\prime\prime}$, $\ rms \sim 10 \ \mu Jy)$

(Beuther et al. 2002)

Molecular masers as diagnostic tools

W75N(B)

(1)	(2)	(3)	(4)	(5)	(6)	
Epoch	a	Ь	PA	e^{a}	Expansion Velocity ^b	
	(mas)	(mas)	(°)		$(mas yr^{-1})$	$({\rm km}{\rm s}^{-1})$
1999.25	71 ± 1^{c}	64 ± 1^{c}	5 ± 3^c	0.43 ± 0.01		
2005.89	97 ± 3	93 ± 2	15 ± 45	0.28 ± 0.02	3.9 ± 0.5	24 ± 3
2007.41 ^c	111 ± 1	68 ± 1	45 ± 1	0.79 ± 0.02	9.2 ± 2.0	57 ± 12
2012.54	136 ± 4	73 ± 2	45 ± 2	0.84 ± 0.05	4.9 ± 0.8	30 ± 5
					4.9 ± 0.3^d	30 ± 2^d

1999.25 - VLBA: Torrelles et al. 2003

2005.89 - VLBA: Surcis et al. 2011

2007.41 - VERA: Kim et al. 2013

Figure 5. Elliptical fits for the H_2O masers in VLA 2 observed with VLBI in epochs 1999.3 (T99), 2005.9 (S05), and 2007.2 (K07) by Torrelles et al. (2003), Surcis et al. (2011), and this work, respectively.

Molecular masers as diagnostic tools

Surcis et al. 2014, A&A, 565, L8

Target Sample from the BeSSeL Survey

10

5

-15

-10

- 5

Using water and methanol masers to measure trigonometric parallaxes and proper motions

of 400 HMSFRs in the MW between 2010 and 2015

10

5

(kpc)

15

Out of the ~100 water masers observed within mid-2013 selected 41 sources:

BESSE

Bar and Spiral Structure Legacy Survey, a VLBA Key Science Project

- 1) Many (> 10), intense (> 1 Jy) spots
- 2) Hi-GAL L_{bol} implying ZAMS B3–O7
- 3) radio-quiet in previous surveys or -10 compact (< 1") and weak (< 50 mJy)
- 4) Sources closer than 9 kpc -15 (sensitive to radio emission of M₂ > 7 M₀)

Continuum multi-frequency JVLA Observations

A-array at 6 GHz (beam ~ 0.4") and 13 GHz (beam ~ 0.2")

B-array at 22 GHz: beam ~ 0.4" (not to resolve the emission and optimum for spectral index) Survey rms ~ 10 μ Jy (> 10 times better than previous surveys !) at each observing frequency At 6 and 22 GHz, methanol and water masers are also observed ($\Delta V = 45$, 13 \rightarrow 0.2 km s⁻¹) <u>Status of the Observations</u>

14 sources observed between October 2012 – January 2013
27 sources observed between March 2014 – May 2014

All targets detected, (non-thermal?) jets

13, 22 GHz

Future Work: Complementing Data

Large VLBI (EVN) Project to measure:

6.7 GHz CH₂OH and 22 GHz H₂O Polarization → B Field at Radii of ~100 AU

Proper Motions of the 6.7 GHz CH₂OH Masers \rightarrow Envelope/Disk Kinematics

NIR and MIR (Large-Class Telescopes) Observations of less-extincted Objects:

Continuum 🔿 (sub)arcsecond

outflow cavity

mm Interferometers (ALMA, SMA, PdBI) Observations of thermal tracers:

¹²CO, ¹³CO, CH₂OH and SiO Lines \rightarrow Water Maser Jet \leftrightarrow Molecular Outflow

Dust Continuum and High-Density (NH, CH, CN) Lines - Molecular Core

THANKS !

Peculiarity of High-Mass (> 6-8 M_o) Star Formation

Molecular masers as diagnostic tools Microwave Amplification by the Stimulated Emission of Radiation Compact and bright maser spots Water Maser Integrated Intensit => We can image them with VLBI! Narrow spectral features (<1 km/s) 12-55 => velocity with great accuracy 25 km/s 1999 April 2 At different epochs, spot morphology is preserved => We track real gas kinematics, not illumination patterns! Multi-epoch studies provide: 1999 Mav Accurate positions: gas structure at mas angular resolution 2 mas 4 AU proper motions + I.o.s. Velocities: LSR Velocity (km/s) **3D Gas Kinematics** VLBA images of 22 GHz H2O accelerations from changes in l.o.s. masers in a SFR velocities: Gas Dynamics Goddi et al., 2006 1999 June 4

Low-mass (~1 M_o) Star Formation: Disk+Jet system

False-color NIR (1.1 - 2.1 µm) deconvoled HST/NICMOS optically thick circumstellar disks in silhouette against bright reflection nebulosity. (Padgett et al. 1999)

False-color (V, R, I) deconvoled HST WFPC2:Emission line jet, continuum reflection nebulae,dark lane.(Burrows et al. 1996)

