Simulating the FIR side of galaxy formation

P. Monaco, University of Trieste and INAF-OATs

with: G. Murante, D. Goz, G. Granato, P. Barai, S. Borgani, K. Dolag, L.Tornatore, G. De Lucia, M.Viel, A. Ragagnin, A. Curir, M. Calabrese

Papers:

- Murante, P.M., Giovalli, Borgani & Diaferio, 2010, MNRAS 405, 1491
- P.M., Murante, Borgani & Dolag, 2011, MNRAS 421, 2485
- Murante, Calabrese, De Lucia, P.M., Borgani & Dolag, 2012, ApJ 749, L34
- Murante, P.M., Borgani, Tornatore, Dolag & Goz, 2015, MNRAS 447, 178
- Goz, P.M., Murante & Curir, 2015, MNRAS 447, 1774
- Barai, P.M., Murante, Ragagnin, Viel, 2015, MNRAS 447, 266

The challenge of galaxy formation

Rendering by G. Skora

n Italia, Bologna, 2015

MUlti-Phase Particle Integrator (MUPPI): a novel sub-resolution model for star formation and feedback in SPH simulations with Gadget-3

Murante, PM et al (2012); loosely following PM (2004, MNRAS 352, 181)

- gas in multi-phase particles is composed by two phases in thermal pressure equilibrium, plus a stellar component;
- gas molecular fraction is scaled with pressure;
- the evolution of the multi-phase ISM is described by a system of ODEs;
- the system of ODEs is numerically integrated within the SPH time-step (NO equilibrium solutions);
- energy from SNe is injected into the hot diluted phase; SPH hydro is done on this phase
 - …entrainment of the cold phase…
- particles respond immediately to energy injection

Molecular fraction f_{mol}

Inspired by Blitz & Rosolowsky, we scale the molecular fraction with SPH pressure -NOT the same quantity the observers use!

 $f_{mol} = 1/(1+P_0/P)$

P. Monaco, III workshop sull'astronomia millimetrica in Italia, Bologna, 2015

Leroy et al. (2009)

- + Kinetic feedback
- + Chemical evolution (Tornatore et al. 2007)
- + Metal cooling (Wiersma et al. 2009)
- + in progress: molecular cooling
- + in progress: AGN feedback
- + in progress: improved SPH hydro

MW-like halos (Murante et al. 2015)

Resimulations of ~IeI2 Msun halos with Vc~220 km/s and quiet merging history since z~2

- GA series (Stoher et al. 2002)
- Aquila series (Scannapieco et al. 2012)

	GA0 🍍	GAI	GA2	GA3	Aq6	Aq5	Aq4
M _{gas} (Msun/h)	2.6e 7	2.8e 6	3.0e 5	3.2e 4	2.4e 6	3.0e 5	3.4e 4
M _{dm} (Msun/h)	I.4e 8	I.5e 7	I.6e 6	I.7e 5	I.3e 7	I.6e 6	1.9e 5
soft. (kpc/h)	1.4	0.65	0.325	0.155	1.0	0.5	0.25

Aq-C5

Radiative transfer in a dusty ISM

GRASIL3D (Silva et al. 1998; Dominguez-Tenreiro et al. 2014)

- Massive stars reside in highly opaque molecular clouds
- They exit the clouds after some time t_{exit}
- Radiative transfer is computed on the "cirrus" (diffuse) component
- Stellar emission follows Padova tracks
- Dust temperature is computed self-consistently
- Results depend on the line of sight

Input to GRASIL3D: • star & gas surface densities • star & gas metallicities star ages • H₂ fraction

[M ₀pc

 $Log(\Sigma_{star}^{0})$

1.3

12.3

10.2

8.2 [Gyr]

61

4.1

0.6

0 2

0.0 N -0.2

-0.4

0.6

0.8

1.0

Age

GA2 map in RGB colors

Cosmological volumes (Barai et al. 2015)

Box size: 25 and 50 Mpc ($H_0=72 \text{ km/s/Mpc}$)

N. particles: 2×256^3 and 2×512^3

Mgas: 5.4×10^{6} M_{sun}

Mstar: I.3×10⁶ M_{sun}

softening: 0.5 physical kpc (comoving for z>5)

Outflow measurement technique (modified from Antonio Ragagnin 2013, Master thesis)

Transform galaxy coordinates s.t. cold gas disk is rotating in X-Y plane

- Select gas particles:
- lying inside either cylinder
- moving at a high-velocity, |v_z|
 V_{limit,outflow}
 - if $(z^*v_z > 0) \Rightarrow$ Outflow
 - if $(z^*v_z < 0) \Rightarrow$ Inflow

slide courtesy of P. Barai

Mass outflow rate vs. galaxy SFR

How can we "measure" these outflows through gas lines?

Approximate procedure

Choose the three box axes as three (random) lines of sight

Select gas particles that would contribute to some line

molecular phase of MP particles \rightarrow molecular emission lines

warm (<10⁵ K) single-phase particles \rightarrow atomic absorption lines

Draw histogram of velocities

across the galaxy for molecular emission lines

on one side of the galaxy for atomic absorption lines

Red: multi-phase particles Blue: velocity of "fast" particles

line of sigh

molecular emission lines

Bologna, 2015

Red: single-phase particles Blue: velocity of "fast" particles galaxy 10781 (central 10781) Mass (Msun): stellar=8.70e+10, gas=3.35e+10, halo=4.20e+12 Rates (Msun/yr): sfr= 78.50, outflow= 44.04 Velocity (km/s): rotation= 337.5, outflow= 449.5

line of sight

Bologna, 2015

atomic absorption lines

A molecular outflow? a false positive!

Summing up

Simulation program to follow the formation of galaxies:

- extension to IR/radio thanks to GRASIL3D
- in progress: detailed treatment of molecular cooling \rightarrow prediction of molecular lines
- in progress: AGN feedback, improved SPH

Outflows:

- molecular outflows are hardly produced without AGN feedback
- gas absorption lines on stellar continuum are a better probe
- molecular lines can produce false positives