Spectral line analysis

Rosita Paladino Italian Node of ALMA Regional Center

Slides & contributions from **Arturo Mignano**

http://www.alma.inaf.it/index.php/Courses

Mean Velocity Field

Spectral line images are 3-dimensional

Spectral line observations have up to 3840 channels. The highest spectral resolution achievable is 30 kHz.

Spectral profiles

1-D slice along velocity axis

Each pixel has a different spectral profile, which may show different line shape, intensity and width.

244 211 km/s 244 211 km/s 2341,211 km/s 2548,005 km/s

Show how the spatial distribution of the line emission changes with freq/velocity

Movies are also used for visualization

DEC

Channel maps

2-D slice along velocity axis

Each panel corresponds to a different Velocity / Freq / Chan

PV diagrams

Slices along spatial dimension

Velocity

Velocity

DEC offset

Moment maps

Integration along the velocity axis

Moment $0 = \int S_v dv$ $Moment 1 = \langle V \rangle$ $. Moment 2 = <V^2>^{1/2}$ 1400 1800 Velocity (km/s)

Velocity field **Moment 1**

Velocity dispersion **Moment 2**

Moment 0: each pixel shows the integrated intensity over the velocity axis

Moment 1: each pixel shows the intensity-weighted velocity