The role of cosmic rays in the formation of interstellar and circumstellar molecules

Maria Elisabetta Palumbo INAF – Osservatorio Astrofisico di Catania mepalumbo@oact.inaf.it http://www.oact.inaf.it/weblab/

Molecules in space

About 160 molecules have been detected in space (http://www.astrochymist.org/astrochymist_ism.html)

						Number	of atoms					
2	3	4	5	6	7	8	9	10	11	12	13	>13
CH	H_2O	NH_3	HC_3N	CH_3OH	CH_3CHO	HCOOCH ₃	$(CH_3)_2O$	$(CH_3)_2CO$	HC ₉ N	C_6H_6	$HC_{11}N$	C ₆₀
CN	HCO^+	H_2CO	HCOOH	CH ₃ CN	CH ₃ CCH	CH_3C_3N	CH_3CH_2OH	HOCH ₂ CH ₂ OH	CH_3C_6H	$CO(CH_2OH)_2$		C_{70}
CH^+	HCN	HNCO	CH_2NH	NH ₂ CHO	CH_3NH_2	C_7H	CH ₃ CH ₂ CN	CH ₃ CH ₂ CHO	C ₂ H ₅ OCHO	C_3H_7CN		
OH	OCS	H_2CS	NH ₂ CN	CH_3SH	CH ₂ CHCN	CH ₃ COOH	HC_7N	CH_3C_5N				
CO	HNC	C_3N	H ₂ CCO	C_2H_4	HC ₅ N	H_2C_6	CH_3C_4H	NH ₂ CH ₂ COOH				
H ₂	H_2S	HNCS	C_4H	C_5H	C_6H	CH ₂ OHCHO	C_8H					
SiO	N_2H^+	$HOCO^+$	SiH_4	CH_3NC	c-C ₂ H ₄ O	C_6H_2	CH_3CONH_2					
CS	C_2H	C_3O	$c-C_3H_2$	HC ₂ CHO	CH ₂ CHOH	CH ₂ CHCHO	C_8H					
SO	SO_2	$C_{3}H$	CH_2CN	H_2CCCC	C_6H	CH ₂ CCHCN	CH_2CHCH_3					
SiS	HDO	HCNH^+	C_5	$\mathrm{HC_{3}NH^{+}}$		NH_2CH_2CN						
NS	HCO	$H_{3}O^{+}$	SiC_4	C_5N								
C ₂	HNO	C_3S	H_2CCC	C_4H_2								
NO	OCN-	c-C₃H	CH_4	HC_4N								
HC1	HCS+	C_2H_2	HCCNC	c-H ₂ C ₃ O								
NaCl	HOC+	HC_2N	HNCCC	CH ₂ CNH								
AlCl	$c-SiC_2$	H ₂ CN	H ₂ COH ⁻	C_5N^*								
KCl	MgNC	SiC ₃	C ₄ H ⁻									
AlF	C_2S	CH ₃	CNCHO									
PN	C3	C_3N										
SIC	CO_2	PH3										
CP	CH ₂	HCNO										
NH	C ₂ O	HOCN										
511N 80 ⁺	INFI2 NoCN	HOOH										
50 CO+	NO	ноон										
HE	MaCN											
LiH	H,+											
SH	SICN											
FeO	AINC											
N	SiNC											
CF^+	HCP											
PO	CCP											
AlO	AlOH											
CN	H_2O^+											
OH^+	H_2Cl^+											
SH^+	KCN											
0,	FeCN											

Ices in the Solar System

<u>Planet</u> Satellite	Observed Species	<u>Planet</u> Satellite	Observed Species
<u>Jupiter</u>		<u>Uran</u>	
lo	SO_2 , H_2S , H_2O	Miranda	H ₂ O
Europa	$H_{2}O_{1}SO_{2}, CO_{2}, H_{2}O_{2}$	Ariel	H ₂ O
Ganymede	$H_{2}O, O_{2}, O_{3}, CO_{2}$	Umbriel	H ₂ O
Callisto	H ₂ O, SO ₂ , CO ₂	Titania	H ₂ O
		Oberon	H ₂ O
<u>Saturn</u>			-
Mimas	H ₂ O	<u>Neptune</u>	
Enceladus	H ₂ O	Triton	N ₂ ,CH ₄ ,CO,CO ₂ ,H ₂ O
Tethys	H ₂ O		
Dione	$H_{2}^{-}O, O_{3}$	<u>Pluto*</u>	
Rhea	$H_{2}^{-}O, O_{3}^{-}$	Pluto	N_2 , CH_4 , CO , H_2O
Hyperion	H ₂ O	Charon	H ₂ O
lapetus	H ₂ O		-
		* After IAU res	olution, in 2006, Pluto is a

* After IAU resolution, in 2006, Pluto is a dwarf planet and is recognized as the prototype of trans-Neptunian objects.

Observations of dense molecular clouds

Solid-phase species in dense molecular clouds

Field star

High-mass young stellar object

Abundance of solid-phase molecules

(with respect to $H_2O=100$)

species	abundance	references
H_2O	100	
CO	0-144	Chiar et al. 1994; Pontoppidan et al. 2003
CO_2	10-32	Gerakines et al. 1999 ; Pontoppidan et al. 2008
CH₃OH	3-30	Allamandola et al. 1992; Dartois et al. 1999; Boogert et al. 2008
CH_4	2-10	Boogert et al. 1997; Oberg et al. 2008
NH ₃	5-10	Tielens 1984; Lacy et al. 1998
H_2CO	3-7	Schutte 1994
OCN	1-8	Tegler et al. 1995
SO ₂	0.3-0.8	Boogert et al. 1997
OCS	0.04-0.1	Palumbo et al. 1997

It is generally accepted that other molecules are also present in icy grain mantles

Origin of interstellar molecules

Gas-phase reactions

Solid phase

Figure Grain-surface reactions

Energetic processing of icy mantles

(molecules released to the gas phase after desorption of ices)

Icy grain mantles

Freeze out of gas phase species (CO)

Grain surface reactions
 (H₂O, CH₃OH, CH₄, H₂S)

 Energetic processing of icy mantles (CO₂, OCS)

Energetic processing

High density and high extinction \Rightarrow stellar radiation does not penetrate molecular clouds

Interaction of cosmic rays with molecular clouds

low-energy cosmic rays

electrons

UV photons

E = keV - MeV

 $\mathbf{E} = \mathbf{keV}$

E = 6.9-13.6 eV

Effects of energetic processing

Laboratory experiments

Laboratories worldwide

Energetic processing driven chemistry

University of Hawaii, Honolulu (USA) NASA/Ames Research Center (USA) NASA/Goddard Space Flight Center (USA) University of Virginia, Charlottesville (USA) AT&T Bell Lab, NJ (USA) Leiden Observatory (NL) University of Paris, Orsay (F) CIMAP-CIRIL-Ganil, Caen (F) Forschungszentrum Jülich (D) Catania Astrophysical Observatory (I)

etc.

Laboratorio di Astrofisica Sperimentale Catania **FTIR spectrometer** Vacuum chamber lon beam 22

Vacuum chamber

Experimental procedure

Irradiation of the sample T=10-150 K

Experimental procedure

Solid CO

Loeffler, Baratta, Palumbo, Strazzulla, Baragiola, 2005, A&A 435, 587

Comparison with IR observations

NGC7538 IRS9 (high-mass YSO) Ioppolo, Palumbo, Baratta, Mennella, 2009, A&A 493, 1017 Elias 16 (field star) Mennella, Baratta, Palumbo, Bergin, 2006, ApJ 643, 923

Chemistry in solid CO

Formation of carbon chains

Palumbo, Leto, Siringo, Trigilio, 2008, ApJ 685, 1033

C_3O_2 , C_2O and C_3O

CO + 200 keV H⁺ T=16 K

Palumbo et al. 2008

CO:N₂ mixtures

Sicilia et al. in preparation

Nitrogen oxides

Sicilia et al. in preparation

Experimental results

After irradiation of CO and CO:N₂ ice mixtures:

 $\sqrt{CO_2/CO_i} \sim 0.1$ (loppolo et al. 2009)

 \checkmark carbon-chain oxides/CO_i \sim 2-3 x 10⁻³ (Palumbo et al. 2008)

✓ NO/CO_i ~ $10^{-2} - 10^{-3}$ ✓ N₂O/CO_i ~ 1-4 x 10^{-3} ✓ NO₂/CO_i ~ 1-3 x 10^{-2}

(Sicilia et al. in preparation)

Sublimation

Palumbo, Leto, Siringo, Trigilio, 2008, ApJ 685, 1033

Carbon chain oxides in the ISM gas phase C,O and C,O detected towards TMC-1CP cold molecular cloud (Brown et al. 1985) L1498 stariess core (Palumbo et al. in preparation) IRAS 16293-2422 hot corino (Ceccarelli, priv. comm.) Elias 18 class II protostar (Palumbo et al. 2008)

These sources cover different phase of low-mass star formation. Observations towards L1498 and Elias 18 triggered by laboratory results. We expect ALMA will detect carbon-chain oxides towards a large number of sources.

 $C_2O/H_2 = 6 \times 10^{-11}$ $C_3O/H_2 = 1.4 \times 10^{-10}$ (e.g., Brown et al. 1985; Ohishi et al. 1991; Palumbo et al. 2008)

Origin of C₂O and C₃O

- Gas phase reactions
- Ion irradiation of CO-rich icy mantles
- In IS clouds: $CO/H_2 = 9.5 \times 10^{-5}$ (Frenking et al. 1982)
- $C_2O/CO = 6.3 \times 10^{-7}$

Assuming:

Experimental highest values C₂O/CO = 3×10⁻³ C₃O/CO = 2×10⁻³

✓ High depletion
✓ Φ(1 MeV) = 1 cm⁻² s⁻¹ (Mennella et al. 2003)

Observed C₂O and C₃O can be formed after 10^2 - 10^3 years (Palumbo et al. 2008)

Nitrogen oxides in the ISM

- Sagittarius 52 (Halfen et al. 2001)
- NO/H,~10⁻⁸

 $N_2O/H_2 \sim 10^{-9}$ (two orders of magnitude higher than predicted by chemical models) $NO_2/H_2 < 3.3 \times 10^{-9}$

> CO depletion at $n_H \ge 10^4 \text{ cm}^{-3}$ N depletion at $n_H \ge 10^6 \text{ cm}^{-3}$

Nitrogen oxides formed in the solid phase after ion irradiation of icy grain mantles and released to the gas phase after desorption of icy mantles.

We expect ALMA will detect nitrogen oxides towards a large number of sources.

C₃O in carbon star IRC +10216 Tenenbaum et al. 2006, ApJ 649, L17

IRC +10216 is an asymptotic giant branch star G_3O column density = 1.2x10¹² cm⁻² an order of magnitude higher than predicted

Other detected O-bearing molecules: H₂O (Melnick et al. 2001; Hasegawa et al. 2006) OH (Ford et al. 2003) H₂CO (Ford et al. 2004)

> C₃O origin in IRC +10216 Gas phase reactions (Tenenbaum et al. 2006) Sublimation of icy bodies (Melnick et al. 2001)

Search for carbon-chain oxides in icy Solar System objects (Comets, Pluto and Kuiper Belt objects)

Tentative detection of carbon suboxide (C_3O_2) in **comet Halley** (Huntress et al. 1991; Crovisier et al. 1991). We would need almost a Hale-Bopp like comet to be able to detect some C_3O lines with ALMA (Jeremie Boissier, priv. comm.)

New Horizons (http://pluto.jhuapl.edu/) Launched in January 2006, will encounter Pluto-Charon in 2015 and other Kuiper Belt objects in 2016-2020.

Acknowledgments

Giuseppe Baratta Carla Buemi Saro Di Benedetto **Vincenzo Greco** Farahjabeen Islam Zuzana Kanuchova **Giuseppe Leto Paolo Leto Matteo Munari Ivana Sangiorgio Gianni Strazzulla Corrado Trigilio Grazia Umana**

MIUR

