Galactic distribution HI

HI4PI collaboration: Effelsberg 100-m + Parkes 64-m Resolution: 16.2 arcmin; rms: 43 mK. Full spatial sampling.

LAB: Galactic distribution HI

Hartmann & Burton 1994

Largest SF Regions: CFA CO survey of the Milky Way

Galactic distribution CO

→ Galactic longitude

Dame, Hartmann & Thaddeus 2001

CO, not H₂

ISM composed essentially of hydrogen:

HI: 21-cm line

H_2 : symmetric molecule \Rightarrow no radio emission

- UV absorption lines
- IR emission lines

CO: most abundant after H_2 : $[H_2]/[CO]^{-4}$.

- excited by collisions with H₂
- easily observed rotational transitions at (sub-)mm wavelengths
- $n(H_2) \ge a \text{ few} \times 10^3 \text{ cm}^{-3}$

Observing molecular clouds at large

H₂ smallest diatomic molecule: widely-spaced energy levels
Even lowest excited rot. levels too far above ground state
to be easily populated at normal molecular cloud T.
no dipole moment, hence quadrupole radiation (slow)

CO: more closely-spaced energy levels; easily populated also at low T

Radiation transport

In practice one measures $\Delta T_A = T_A - T_{bg}$ (ON-OFF) = ($T_{ex} - T_{bg}$) (1- $e^{-\tau_v}$)

1) $\tau_v \ll 1: \Delta T_A \approx T \tau_v$ measure column density. All photons escape. 2) $\tau_v \gg 1: \Delta T_A \approx T$ measure kinetic temperature, but independent of col. dens. Only photons at cloud surface ($\tau_v \le 1$) escape.

\textbf{T}_{ex} , $\tau\text{,}$ and column density in LTE

For an optically thick line, e.g. CO(1-0): $\tau_v \gg 1$; the detection equation yields:

 $T_{ex} = (hv/k) \ln^{-1}(hv/k [T_A + J(T_{bg})]^{-1} + 1)$ = 5.532 ln⁻¹(5.532[T_A + 0.818]^{-1} + 1)

For an optically thin line, e.g. ¹³CO(1-0): $\tau_v \ll 1$; it follows that:

 $\tau_v = -\ln[1 - T_A / (J(T_{ex}) - J(T_{bg}))]^{-1}$

Column density – derived from transition between levels J and J-1. Detection equation: $T_A = J(T_{ex}) (1 - e^{-\tau_V}) + J(T_{bg}) e^{-\tau_V}$ and $\tau_v \ll 1$, solve for τ_v . From definition of T_{ex} , the definitions of the Einstein-coefficients, the equation for the absorption coefficient, and the definition of τ

$$N_{tot} = \left(\frac{3h}{8\pi^{3}\mu^{2}}\right) \left(\frac{Z}{J}\right) e^{\frac{hv}{kT_{ex}}} \left[1 - e^{-\frac{hv}{kT_{ex}}}\right]^{-1} \left[J(T_{ex}) - J(T_{bg})\right] \int T_{A} dv$$

with Z the partition function (linking N_1 to N_{tot}).

or:
$$N_{tot} = f(T_{ex}) \int T_A dv$$

Total column density

 $N_{tot} = f(T_{ex}) \int T_A dv$

For ¹³CO(1-0) and C¹⁸O(1-0) and T_{ex} \approx 5 – 20 K:

 $f(T_{ex}) \approx (1.1 \pm 0.2) \times 10^{15} \,\mathrm{cm}^{-2} \,/(\mathrm{Kkm/s})$

Hence:

 $N_{tot} = (1.1 \pm 0.2) \times 10^{15} \int T_A dv cm^{-2} \Rightarrow Mass!$

If $\tau_v \le 2$ then correction factor $\tau_0 / [1 - \exp(-\tau_0)]$, with τ_0 the opt. depth at line center $\tau_0 = -\ln(1-1/R)$ and $R = T_A (^{12}CO) / T_A (^{13}CO)$.

Therefore:

 $N_{tot} = (1.1 \pm 0.2) \times 10^{15} \times \tau_0 / [1 - exp(-\tau_0)] \times \int T_A dv cm^{-2}$

Mass follows via abundances: N(¹²CO)/N (¹³CO) ~ 90 and N(¹²CO)/N(H₂) ~ 1×10^{-4}

Deriving N(H₂), total mass

1. Lines (Planck & Boltzmann)

Detection eqn., LTE, $\tau({}^{12}\text{ CO}) \gg 1 \iff T_{ex}$, $\tau({}^{13}\text{ CO}) \ll 1$ N(${}^{13}\text{ CO}$) = $f(\tau_{13}, T_{ex}, \Delta v_{13}) + [H_2]/[{}^{13}\text{ CO}] = \Rightarrow N(H_2)_{LTE}$ ${}^{12}\text{ C/H}, {}^{12}\text{ C}/{}^{13}\text{ C} \text{ gradients} \Rightarrow [H_2]/[{}^{13}\text{ CO}] = f(R)$

Non-LTE transitions: LVG model (full radiation transport eqns.)

2. Virial theorem

Cloud radius (r), linewidth (Δv), assumptions about density distribution. For spherical cloud, n \propto r⁻² \Rightarrow M_{vir} = 126 r Δv^2 Exclude non-bound motions (e.g. outflows); actual density distribution?

3. Dust continuum

 $M = (gS_{v}d^{2})/\kappa_{v}B(T_{dust})$ κ_{v} , T-structure, gas-to-dust ratio (g) uncertain

- 4. Extinction mapping N(HI) + 2N(H₂) \approx 1.9 × 10²¹ cm⁻² A_V, I_{co} or N(¹³ CO)
- 5. Lines (empirical)

 $N(H_2)/\int T(^{12}CO) dv \equiv X \Rightarrow N(H_2)_{Wco}$

X = constant or f (R)?

$N(H_2) = X_{co} W_{co}$ with $W_{co} = \int T(^{12}CO) dv$

In Milky Way $X_{co} = 2 \times 10^{20}$ (K kms⁻¹)⁻¹ cm⁻² with 30% uncertainty (Bolatto+ 2013 ARAA)

$$M = \pi R^2 \times N(H_2) \times m(H_2) \times He\text{-corr} = \pi R^2 X_{CO} W_{CO} \times m(H_2) \times He\text{-corr} = [X_{CO} \times m(H_2) \times He\text{-corr}] \times L_{CO}$$

 $M_{mol} = \alpha_{CO} L_{CO} \text{ with } L_{CO} = \pi R^2 W_{CO} \text{ in } K \text{ km s}^{-1} pc^2$ Plugging in values, $pc^2 \rightarrow cm^2$, $g \rightarrow M_{\odot}$

 $=> M(M_{\odot}) = 4.3 L_{co}$ for the galactic value of X_{co}

The value of X_{co} is determined by calibrating empirical N or M with other methods.

Original derivation of X_{co} was by using diffuse γ -ray emission (Lebrun+ 1983)

Based on fact that diffuse γ -ray emission is mostly due to collisions between cosmic rays and the ISM: $I_{\gamma} = \varepsilon_{\gamma}[N(HI) + 2X_{CO}W_{CO}]$ (Bloemen 1989) compare maps of diffuse γ -emission, HI and CO to find X_{CO} .

Values for other types of galaxies

•Normal galaxies: $X_{co} \approx 2 \times 10^{20}$ with factor 2 uncertainty

Increases sharply in systems with metallicity ca. 0.5 solar Often smaller in central regions, as in MW

* Starbursts and other luminous galaxies: $X_{co} \approx 0.4 \times 10^{20}$ with factor 3 uncertainty

Antennae-values: see Zhu, Seaquist & Kuno 2003 ApJ 588, 243 Mtot ~ 2 × 10⁹ M_{\odot} See also Herrera+ 2012 A&A 538, L9 for ALMA data (3-2 instead of 1-0!) or Espada+ 2012 ApJL 760, L25 ALMA CO(2-1): derives Σ (M_{\odot} pc⁻²), uses units like Jy kms⁻¹ arcsec⁻²!

* At high redshifts:

In massive merger-driven starbursts such as SMGs, most consistent with low X_{co} (cf. local ULIRGs) In blue-sequence galaxy disks, likely higher X_{co} (cf. local disks)