School of Physics and Astronomy

¹³CO(1-0)

Pre-stellar cores

Composite Spitzer

Paola Caselli

Outline

- The pre-stellar core (PSC) chemical structure
- Dust grains: freeze-out and deuteration
- Environmental effects and protostellar feedback
- Isolated vs. clustered low-mass pre-stellar cores
- Low-mass vs. high-mass

The PSC chemical structure

Molecular freeze-out and deuterium fractionation (Bergin & Tafalla 2007)

The effects of gas-dust interaction

Freeze-out versus Free-fall

$$t_{dep} = \frac{1}{\alpha n_d \pi a_d^2 v_t} \approx 10^9 \sqrt{m_X / T} (n_H \alpha)^{-1} \text{ yr}$$
$$t_{ff} = \left(\frac{3\pi}{32G\rho}\right)^{-1/2} = 4 \times 10^7 (n_H)^{-1/2} \text{ yr}$$

Walmsley 1991 van Dishoeck et al. 1993

Nítrogen chemístry

Dust emission in a pre-stellar core (Ward-Thompson et al. 1999)

Evidence of freeze-out: deuterium fractionation

Dust emission in the pre-stellar core L1544 (Ward-Thompson et al. 1999)

See also Bacmann et al. 2002; 2003

D-fractionation increases towards the core center (~0.2; Caselli et al. 2002; Crapsi et al. 2004, 2005)

Deuterium Fractionation at $T < 20 \ K$

$$H_{3}^{+} + HD \Rightarrow H_{2}D^{+} + H_{2} + 230 \text{ K} \quad \text{Watson}$$

$$Millar \in \mathbb{N}_{2} \rightarrow \mathbb{N}_{2}D^{+} + H_{2}$$

$$H_{2}D^{+} + CO \rightarrow DCO^{+} + H_{2}$$

Watson 1974 Millar et al. 1989

 H_2D^+/H_3^+ increases if the abundance of gas phase neutral species decreases (Dalgarno & Lepp 1984; Roberts & Millar 2000)

\mathcal{D} -fractionation: o- $\mathcal{H}_2\mathcal{D}^+$

ortho-H₂D⁺ and N₂D⁺ trace the same region (size ~ 5000 AU) \rightarrow

Environmental effects

Protostellar feedback

Protostellar feedback affects the physical conditions of the surrounding cloud (especially in cluster forming regions).

Quiscence is soon lost...

Pineda et al., in prep.

\mathcal{NH}_3 , $\mathcal{NH}_2\mathcal{D}$ and the physical structure

- On size scale of ~800 AU: No NH₃ freeze-out (X_{NH3} ~ 10⁻⁸) at n_H ~ 10⁶ cm⁻³ (inner 1000 AU) !
- The gas temperature drops to ~6 K in the central 1000 AU
- The deuterium fractionation is ~0.4 in the central 3000 AU
- Loss of specific angular momentum towards the small scales

 10^{14}

-15

-10

0 8

5

 $\Delta \alpha$

Crapsi, Caselli, Walmsley & Tafalla 2007

Velocity gradients and the specific angular momentum

The loss of L towards the small scales is consistent with observations in more evolved sources (Belloche et al. 2002).

Kínematícs

Radíatíve transfer Analysís

- Contracting Bonnor-Ebert sphere
- Simple CO chemistry (freezeout + photodissociation)
- Radiative energy balance (+photoelectric heating)
- Radiative transfer

 $\zeta \sim 1 \times 10^{-17} \text{ s}^{-1}$, fluffy grains, n_c $\sim 2 \times 10^7 \text{ cm}^{-3}$ within 500 AU v_{inf} $\sim 0.1 \text{ km s}^{-1}$ at 1000 AU

Keto & Caselli 2008, 2010

5

Velocity (kms⁻¹)

10

0

15

N6: starless core in the nearest cluster-forming region

 densest gas condensation in
 Ophiuchus, the nearest clusterforming region (125 pc)

- half a dozen local maxima of emission (dust and line; 10" resolution; N_2H^+ 1-0 Di Francesco et al 2004; 1.3 mm Motte et al. 1998)

– starless dense core N6 is an N_2H^+ peak but not a dust continuum peak (10 mJy; 1000 AU and mass 0.01 M_{\odot})

warm at 20 K (NH₃
 observations with the GBT; Pon et al. 2009)

N6: starless core in the nearest cluster-forming region

BOURKE et al., in prep.

	N6	L1544
Size (AU) N ₂ H ⁺ (3-2)	3000x1500	~8000
N(N ₂ D ⁺)/ N(N ₂ H ⁺)	0.06	0.20
T _c (K)	14	7
∆v (km/s) _{N2} H⁺(3-2)	0.25	0.18
$\Delta v_{\rm NT} / \Delta v$ N ₂ H ⁺ (3-2)	0.25	0.23
$M(M_{\odot})$ Within N ₂ H ⁺ (3-2)	0.2	0.05

Deuterium fractionation in star forming regions

 N_2D^+/N_2H^+ can be used to trace core evolution even after star formation.

Emprechtinger, Caselli, Volgenau + 2009

IRAS05345+3157: a young massive star forming region

-17.8

-18

-18.2 km/

ں –18.4

-18.6

-17.6

-17.8

-18 km/s

-18.2

5

SMA + NRAO map of the CO(2-1) outflow

The kinematics of the deuterated condensations is influenced by the nearby protostars.

Deuteration in massive star forming regions

Fontani, Palau, Caselli, Butler, Tan + 2011

PSCs in quiescent high-mass IR-dark clouds

(see also Peretto & Fuller 2009, 2010; Ragan et al. 2009, 2011; Henning et al. 2010; Peretto et al. 2010; Rathborne et al. 2010; Stamatellos et al. 2010)

IRDC: extended CO freeze-out (Hernandez, Tan, Casellí + 2011)

IRDC: multiple filaments and evidence of filament merging (Henshaw et al., in prep.)

IRDC: extended SíO emíssion Jímenez-Serra, Casellí, Tan et al. (2010)

Summary

- Astrochemistry(+ observations!) needed to study the initial conditions of star formation.
- Inter-core environment, protostellar feedback, and gas-dust interactions affect chemical/physical evolution (ages?).

•Low-mass: (i) isolated: quiescent, $T_c \sim 6K$, $f_D(CO) > 10$, $D_{frac} > 0.2$; (ii) in cluster-forming regions: more compact, warmer. D_{frac} decreases with YSO evolution.

•High-mass:

highly deuterated (cold) cores nearby
HMPOs are affected by outflows.
-IRDCs are the best candidates where to
find pre-star-cluster clumps (CO freezeout + D-fractionation similar to low-mass)