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Interstellar Molecules
Known Interstellar Molecules (Total: > 170) 

Amino acetonitrile in SgrB2(N) 
(Belloche et al. 2008)
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Glycine - the simplest amino acid



How do molecules form in the
interstellar medium ?

The most elementary chemical reaction is the association of A
and B to form a molecule AB with internal energy:

A + B → AB*

The molecule AB* must lose the internal energy.  In the Earth atmosphere,
where the number of particles per cubic centimeter (cc) is very large (~1019),
the molecule looses its energy via three-body reactions:

AB* + M → AB
But this is not an efficient process in interstellar clouds, where the number
of particles per cc ranges between a few hundred and ~108.



1. The formation of H2

The reaction that starts the chemistry in the
interstellar medium is the one between two
hydrogen atoms to form molecular hydrogen:

      H + H → H2

This reaction
happens on the
surface of dust
grains.



The H2 formation rate (cm-3 s-1) is given by (Gould & Salpeter 1963;
Hollenbach & Salpeter 1970; Jura 1974; Pirronello et al. 1999; Cazaux & Tielens
2002; Bergin et al. 2004; Cuppen & Herbst 2005; Cazaux et al. 2008):
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nH≡ gas number density
vH≡ H atoms speed in gas-phase
A ≡ grain cross sectional area
ng≡ dust grain number density
SH≡ sticking probability
γ ≡ surface reaction probability 

1. The formation of H2
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Once H2 is formed, the fun starts…

H2 is the key to the whole of interstellar chemistry.  Some important species
that might react with H2 are C, C+, O, N… To decide whether a certain
reaction is chemically favored, we need to examine internal energy changes.

5.10OH+

4.09CH+

4.39OH
3.47CH
4.48H2

Dissociation energy (eV)Molecule 

C + H2 → CH + H  ??
C+ + H2 → CH+ + H ??

O + H2 → OH + H  ??
O+ + H2 → OH+ + H ??

Question: Can the following reactions proceed in the cold
interstellar medium?



Once H2 is formed, the fun starts…

Dissociation
energy or
bond strength

C + H2 → CH + H  ??

 4.48 eV  3.47 eV

The bond strength of H2 is
larger than that of CH the
reaction is not energetically
favorable.

The reaction is endothermic
(by 4.48-3.47 = 1.01 eV) and
cannot proceed in cold clouds,
where kb T < 0.01 eV !



Once H2 is formed, the fun starts…

(endothermic by 1.01 eV)
(endothermic by 0.39 eV)

(endothermic by 0.09 eV)

C + H2 → CH + H 
C+ + H2 → CH+ + H
O+ H2 → OH + H

✗
✗
✗

O+ + H2 → OH+ + H ✔ (exothermic by 0.62 eV!)

5.10OH+

4.09CH+

4.39OH
3.47CH
4.48H2

Dissociation energy (eV)Molecule 



Rate coefficients and activation energies

The rate coefficient k (cm3 s-1) of a generic reaction A + B -> C
+ D is given by:
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k =< "v >

σ ≡ total cross section of the reactants
v ≡ relative velocity
<The average is performed over the thermal distribution>

Most reactions possess activation energies Ea (~0.1-1 eV) even
if exothermic and k is given by the Arrhenius formula (Herbst
1990):
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Ion-Neutral reactions

AA++ + B  + B →→ C C++ + D + D
Exothermic ion-molecule reactions do not possess activation
energy because of the strong long-range attractive force
(Herbst & Klemperer 1973; Anicich & Huntress 1986):

V(R) = - α e2/2R4

R

kLANGEVIN = 2 πe(α/µ)1/2

                      ∼ 10-9 cm3 s-1

  independent of T



A + BC A + BC →→ AB + C AB + C
      1 eV  for endothermic reactions
E ∼
      0.1-1 eV  for exothermic  reactions

kb T   <   0.01 eV  
in molecular clouds

Energy to break
the bond of the
reactant.

Energy released by
the formation of
the new bond.

Example:  O + H2  → OH + H
(does not proceed in cold clouds)

✗

Duley & Williams 1984, 
Interstellar Chemistry; 
Bettens et al. 1995, ApJ

Neutral-Neutral reactions



2. The formation of H3
+

H2 + c.r. → H2
+ + e- + c.r. 

After the formation of molecular hydrogen, cosmic rays ionize H2
initiating fast routes towards the formation of complex molecules
in dark clouds:

Once H2
+ is formed (in small percentages), it very quickly reacts

with the abundant H2 molecules to form H3
+, the most important

molecular ion in interstellar chemistry:

H2
+ + H2 → H3

+ + H 
H H

H



3. The chemistry initiated by H3
+

Once H3
+ is formed, a cascade of

reactions greatly enhance the
chemical complexity of the ISM.

In fact, H3
+ can easily donate a

proton and allow larger molecules
to form.

H3
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H2O OH O
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Example 
OXYGEN CHEMISTRY (the
formation of water in dark clouds)



3. The chemistry initiated by H3
+

CARBON CHEMISTRY (the formation of hydrocarbons) 

The formation of more complicated species from neutral atomic carbon begins
with a sequence very similar to that which starts the oxygen chemistry:

CH

C CH+ CH2+ CH3+

CH2
H3+ H2 H2 e

e

A. Proton transfer from H3
+ to a neutral atom;

B. Hydrogen abstraction reactions terminating in a molecular ion that does
     not react with H2;
C. Dissociative recombination with electrons.



4. Formation and destruction of CO

[a] C + H3O+ → HCO+ + H2
[b] O + CH3

+ → HCO+ + H2
[c] HCO+ + e → CO + H  is the most important source of CO.

CO is very stable and difficult to remove.  It reacts with H3
+:

   [d] H3
+ + CO → HCO+ + H2

but reaction (c) immediately reform CO. 

The main mechanisms for removing CO are:
   [e] He+ + CO → He + C+ + O
   [f] hν + CO → C + O

Some of C+ can react with OH and H2O (but not with H2):
    [g] C+ + OH → CO+ + H
    [h] CO+ + H2 → HCO+ + H
    [i] C+ + H2O → HCO+ + H



The timescale to form CO

The timescale on which almost all carbon becomes contained in
CO (nO > nC) is at least equal to the timescale for one H2 to be
ionized for every C: nC/[ζ n(H2)] = 2 nC/[ζ nH]

For ζ = 3×10-17 s-1  and nC/nH = 10-4, the above expression gives
a value of about 2x105 yr.

Assume: dark region where all H is in H2 and all atoms more
massive than He are in neutral atomic form.

 HCO+ CO
O e-
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Einstein coefficient for
spontaneous emission

Einstein coefficient for
stimulated emission

Collisional deexcitation
coefficientCollisional coefficient

Einstein coefficient for
absorption

5. The two-level system

Problem: find the level populations nu and nl as a function of the ambient kinetic
temperature Tkin and density ntot.

In order for the populations of both levels to remain constant in time, we need:
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In Local Thermodinamic Equilibrium (i.e. when radiative transitions are negligible):
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When ntot is so low that that radiative transitions dominate: 
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Emission in the J=1→0 line of 12C16O 

Increasing the density in a cloud can enhance the J=1-0 emission, but only for
subcritical values of ntot.


Observations in a given transition are most sensitive to
gas with densities near the corresponding ncrit.



Transfer of radiation in spectral lines

! 

dI"

ds
= #$" I" + j"

The propagation of the specific intensity Iν is governed by the radiative transfer
equation:

Iν(0) Iν(s) Iν(Δs)

s=0 s=Δs

! 

I" (#s) = I" (0)exp($%"#s) +
j"

%"

[1$ exp($%"#s)]

Stahler & Palla (2004)
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We consider the case in which both absorption and emission are due to transitions
between two discrete levels in an atom or molecule.  The macroscopic emission and
absorption coefficients can be written in terms of the microscopic Einstein coefficients:



The quantity of interest to the observer is not Iν itself, but rather the difference
between Iν and the background intensity.  Accordingly, we define a brightness
temperature TB by:
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If we make the final assumption that the background radiation field is Planckian
with an associated temperature Tbg:
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TBo is what we measure if we are observing the source with a perfect telescope
above the atmosphere, and with an angular resolution much smaller than the
source size.



Antenna and Brightness Temperature
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The brightness temperature is the temperature
which would result in the given brightness if
inserted into the Rayleigh-Jeans law (T0 / T<< 1
or hν<<KT , valid in radioastronomy)
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Column Density
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For the two-level system, nl~n and nlΔs~N, the column density. Such an
approximation is however not adequate for a system in which the two levels are
closely spaced rungs in the ladder (e.g. CO). In these cases:
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The Rotational Temperature Diagram (RTD)

The RTD is a customary technique to analyze the data of an
individual molecule with many transitions. This method
assumes LTE conditions so that a single excitation
temperature (Trot) characterizes all transitions.

If the transitions are all optically thin, the RTD provides a
good estimate of the column density of the molecule towards
the source.

Goldsmith & Langer (1999)



The Rotational Temperature Diagram (RTD)
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Now we assume that                         . We can then write     as:
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The Rotational Temperature Diagram (RTD)
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The optical depth of the transition can be written as: 
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Substituting these two expressions in: 
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The Rotational Temperature Diagram (RTD)
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We can now invert the above equation to yield an expression
for Nu. Considering the integrated line intensity,
(             ) we obtain:
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The Rotational Temperature Diagram (RTD)

If the molecule is in LTE:
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Combining this with the previous expression of Nu,
assuming optically thin conditions, and taking the log 
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The Rotational Temperature Diagram (RTD)

The previous expression shows that                        is a linear

function of Eu/kB, with slope -(log e)/Trot and intercept
log[N/Q(Trot)] at Eu = 0:
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White et al. (2010)



Solving radiative transfer problems

van der Tak et al. (2007) 

For the two level system, the statistical equilibrium equations are: 
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To solve this, we need to know the radiation field which was
what we were after in the first place. This problem can be
solved with some simplifying assumptions.



Solving radiative transfer problems: escape probability

The problem is how to decouple the radiative transfer
calculations from the calculations of the level populations.

The escape probability β is a factor which allows us to
determine the chance that a photon at some position in the
cloud can escape the system (based on Sobolev 1960).

We need to estimate    to calculate the level population.     is the
amount of radiation “inside” the source. For a completely
opaque source,     = S, the source function.

If β is the chance that a newly created photon can escape from
the cloud, then
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Solving radiative transfer problems: escape probability

Now the statistical equilibrium equations can be simplified:
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And we can solve the level populations and the radiation field
separately; they are decoupled. The contribution from
background radiation can easily be added:

- take the background intensity. The average chance that it
penetrates into the source is (1 - β).



Solving radiative transfer problems: escape probability

How to estimate β? Several forms have been proposed that
depend on geometry (we have to find a form that estimates
the average local escape probability over all directions).

A very crude form of β in a one-dimensional case can be
estimated as:
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The form of β for a radially expanding sphere is equal to the
above result. This is called the Sobolev or large velocity
gradient (LVG) approximation (see also Elitzur 1992).



Solving radiative transfer problems: escape probability

For a homogeneous slab:
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This last formula is used in RADEX (on-line code): 
http://www.sron.rug.nl/~vdtak/radex/radex.php  





SUMMARY
H2 molecules are formed on the surface of dust grains with
a rate
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H3
+ is formed from cosmic-ray ionization of H2, followed by

H2
+ + H2. This starts interstellar chemistry.
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The two level system and the brightness temperature
of a molecular line at frequency ν = ν0.
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