Introduction to ALMA Leonardo Testi ESO

ALMA and its Science Goals ALMA Status, Timeline, Early Science ALMA Development Plan

Atacama Large Millimeter Array

- At least 50x12m Antennas
- Frequency range 30-1000 GHz (0.3-10mm)
- 16km max baseline (<10mas)
- ALMA Compact Array (4x12m and 12x7m)
- 1. Detect and map CO and [C II] in a Milky Way galaxy at z=3 in less than 24 hours of observation
- 2. Map dust emission and gas kinematics in protoplanetary disks
- 3. Provide high fidelity imaging in the (sub)millimeter at 0.1 arcsec resolution

Multiplicity, disk vs pseudodisk, role of B

Disk Evolution

 There is evidence that disk evolution and planet formation systems may occur on timescales of a few million years

Gas density maxima and grain trapping

Leonardo Testi: Introduction to ALMA, Bologna 13 Jun 2011

Birth of Planets

Complex Organic Molecules Detected Not (yet) detected

Acetic acid

Ethanol

Di-methyl ether

Sugar

Methyl cyanide Methyl formate

How far does chemical complexity go? Can we find pre-biotic molecules in Disks?

Glycine

Purine

Pyrimidine

Caffeine

History of Galaxies

(12 days of integration)

z<1.5

z>1.5

History of Galaxies

 ALMA will resolve the far infrared background seen by DIRBE and FIRAS

History of Galaxies

 In the (sub-)millimeter the inverse K-correction compensates for the distance as z increases

Measuring redshift (and more) using CO, [CII] or [OI]

The Engine of nearby AGNs

 ALMA will resolve the molecular gas structure and dynamics around nearby AGNs

ALMA Science

- Star Formation, Proto-planets in nearby disks
- Astrochemistry
- Interstellar medium (Galaxy, Local Group)
- High-redshift deep fields
- + +130 projects in first 3yrs DRSP 2.0
 - http://www.eso.org/sci/facilities/alma/science/drsp/

+ ALMA Science is for everyone

- High resolution/sensitivity 3D instrument at mm-wl
- 100% service observing with full dynamic scheduling
- Complete e2e data flow system
- · Science quality images (cubes) delivered to the users
- Raw, calibrations, pipeline processed data and recipes in archive
- Friendly and widespread User Support through ARCs

ALMA Science Requirements

+ High Fidelity Imaging.

Precise Imaging at 0.1" Resolution.

- Routine sub-mJy Continuum Sensitivity.
- Routine mK Spectral Sensitivity.
- Wideband Frequency Coverage.
- Wide Field Imaging Mosaicing.
- Submillimeter Receiver System.
- Full Polarization Capability.
- System Flexibility.

Technical Specifications

- ◆ 54 12-m antennas, 12 7-m antennas, at 5000 m site
- Surface accuracy ±25 μm, 0.6" reference pointing in 9m/s wind,
 2" absolute pointing all-sky.
- Array configurations between 150m to ∼16km.

10 bands in 31-950 GHz + 183 GHz WVR.

8 GHz BW, dual polarization.

Flux sens. 0.2 mJy in 1 min at 345 GHz (median cond.).

- Interferometry, mosaicing & total-power observing.
- Correlator: 4096 channels/IF (multi-IF), full Stokes.
- Data rate: 6MB/s average; peak 60-150 MB/s.
- All data archived (raw + images), pipeline processing.

San Pedro de Atacama

Operations Support Facilities OSF (2900m altitude)

 \otimes

ALMA Operations Site AOS (5000m altitude)

Toconao

mm Interferometers (u,v) coverage

mm Interferometers (u,v) coverage

mm Interferometers (u,v) coverage

- Current mm interferometers offer typically ~10⁴ visibility measurements in several hours, the VLA delivers ~10⁵ visibilities per hour
- ALMA will improve by almost two orders of magnitude

ALMA Receivers

	ATMA		Receiver noise	temperature		Receiver technology	
	Band	Frequency Range	T _{Rx} over 80% of the RF band	T _{Rx} at any RF frequency	Mixing scheme		
	1	31.3 – 45 GHz	17 K	28 K	USB	HEMT	
	2	67 – 90 GHz	30 K	50 K	LSB	HEMT	
	3	84 – 116 GHz	37 K	62 K	2SB	SIS	
⇒∣	4	125 – 169 GHz	51 K	85 K	2SB	SIS	
⇒Ì	5	163 - 211 GHz	65 K	108 K	2SB	SIS	
	6	211 – 275 GHz	83 K	138 K	28B	SIS	
	7	275 – 373 GHz*	147 K	221 K	2 SB	SIS	
⇒∣	8	385 – 500 GHz	98 K	147 K	DSB	SIS	
	9	602 – 720 GHz	175 K	263 K	DSB	SIS	
⇒	10	787 – 950 GHz	230 K	345 K	DSB	SIS	

* - between 370 – 373 GHz T_{ix} is less then 300 K

•Dual, linear polarization channels:

Increased sensitivity

Measurement of 4 Stokes parameters

•183 GHz water vapour radiometer: •Used for atmospheric path length correction

 ★ Japanese contribution all telescopes plus ACA
 ★ EC funded 6 receivers ALMA-Herschel sinergy Leonardo Testi: Introduction to ALMA, Bologna 13 Jun 2011

¥

Temperature

Noise 7

(the two sidebands are measured independently)
The higher frequency receivers are DSB receivers

Leonardo Testi: Introduction to ALMA, Bologna 13 Jun 2011

Array Operations Site

Example of FDM & TDM Modes for all 4 polarization products with 2 BBs per Quadrant

• Not supported for Early Science in Table below:

Double Nyquist and 4-bit correlation (despite higher sensitiviy)

Mode #	Number of sub- channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor
13	32	2 GHz	2048	976 kHz	1.28 km/s	2-bit x 2-bit	Nyquist
14	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist
32	16	1 GHz	1024	976 kHz	1.28 km/s	2-bit x 2-bit	Twice Nyquist
15	8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist
33	8	500 MHz	1024	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist
16	4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist
34	4	250 MHz	1024	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist
17	2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist
35	2	125 MHz	1024	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist
51	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist
18	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist
36	1	62.5 MHz	1024	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist
52	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist
66	1	62.5 MHz	256	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist
37	1	31.25 MHz	2048	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist
67	1	31.25 MHz	512	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist
70	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	2-bit x 2-bit	Nyquist

Multi resolution modes

Table & Multi-resolution mode possibilities

							Spectral Channel Resolution for each polarization data set					
							as a function	of the fraction of co	orrelator resources	assigned in Multi-re	slution Mode	
							(Tot	al #spectral channe	is per polarization	data set in parenthe	:3IS)	
Corr Mode	·	100	e Identi	fier								
Number	BW		BITS	N,	GUIST	T POLZ	Full	1/2	1/4	1/B	1/16	1/32
						\frown						
2	1GHz	•	2x2		1N	- 1BE	122 KHz (8192)	244 KHz (4096)	na	na	па	na
3	500MHz	•	2x2	-	1N	1BE	61 KHz (8192)	122 KHz (1096)	244 KHz (2048)	na	па	na
4	250MHz	•	2x2	-	1N	1BB	30.5 KHz (8192)	61 KHz (4096)	122 KHz (2018)	244 KHz (1024)	na	na
5	125MHz	•	2x2		1N	1BE	15.3 KHz (8192)	30.5 KHz (4096)	61 KHz (2018)	122 KHz (1024)	244 KHz (512)	na
8	62.5MHz		2x2	-	1N	- 1BB	7.63 KHz (8192)	15.3 KHz (4096)	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)
						$\mathbf{\bigcirc}$						
						\frown						
9	500MHz	•	2x2	-	1N	- 2BE	122 KHz (4096)	244 KHz (2048)	na	na	na	na
10	250MHz	•	2x2	-	1N	2BB	61 KHz (4096)	122 KHz (2048)	244 KHz (1024)	na	па	na
11	125MI IZ	•	2x2	-	1N	200	30.5 KHz (4096)	61 KHz (2040)	122 Ki iz (1024)	244 KHz (512)	па	na
12	62.5MI Iz	-	2x2		1N	- 288	15.3 KHz (4096)	30.5 KJ iz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)	na
						\leq						
	0501414		0.0			0000	100 0 - 100 101		1351			
16	250MHZ	•	20.2	-	1N	200-P	122 KHZ (2046)	244 KHZ (1024)	na	na	na	na
17	125MHZ	•	202	-	IN	200-P	61 KU IZ (2048)	122 KHZ (1024)	244 KI IZ (512)	na	na	na
18	62.5MHz	•	2x2	-	1N	288-P	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)	па	na
	\frown					\smile						
25	10.0540.05		200		100		2.02.01.00.00023	1 61 71 3 74006	15 2020 5 22000	10.5.20.5.240245	C1.M11975470	1211/111 (25.0)
20	al varity	r	11.1	0	214	- 100	any kin (max)	7 65 51 7 (40.95)	15.3 517 (2140)	50 5 KUV (11124)	DIMIN (all)	122 KH2 (200)
31	31.25MHz	1	282		2N	- 200	7 (3 KHZ (4096)	15.3 KU7 (2048)	30.5 KHz (1024)	61 KUZ (512)	122 KHz (256)	na
		L				200		1000 0 2 (2000)		011412 (012)	122 1012 (2007	114
37	31.25MHz		282	-	2N	- 20B-P	15 3 KHZ (2048)	30.5 KHZ (1024)	61 KHZ (512)	122 KH7 (256)	па	na
	\smile									1. 1. S. 1.		

« The ALMA Correlators » A. Baudry, ALMA Newsletter, Jan. 2011, No 7

http://www.almaobservatory.org/en/outreach/newsletter/252-newsletter-no-7

Leonardo Testi: Introduction to ALMA, Bologna 13 Jun 2011

Operations Support Facility - 2900m

ALMA Construction Status

Water Vapour Radiometers

All ALMA antennas will be equipped with water vapour radiometers observing the 183GHz atmospheric water line.

WVRs track phase on 1s timescales along the same path (within 3-10 arcmin) as the astronomical signal from the source (complementary to fastswitching: \geq 10s and few degs)

-Improve Sensitivity and Fidelity -Allow to increase switch time

WVR progress

- Successful testing at Onsala, OSF and AOS
- Correction very promising

ALMA Test Data on NGC253

Science Verification

- TW Hya protoplanetary disc
- NGC3256 Nearby luminous galaxy
- Antennae Merger mosaic
- BRI1202-0725 High-Z CII
- HD 107146 debris disc

Science Verification

TW Hya – protoplanetary disc

http://casaguides.nrao.edu/index.php?title=TWHydraBand7

NGC3256 – Nearby luminous galaxy

http://casaguides.nrao.edu/index.php?title=NGC3256Band3

ALMA Early Science

When?

- Deadline 30 June 2011
- Observations Fall 2011

What?

- ➢ 16 antennas
- Configurations from compact (125m) to moderately extended (400m)
- single field interferometry plus pointed mosaics with up to 50 pointings
- Bands 3, 6, 7 and 9 (3mm, 1mm, 0.85mm, 0.45mm)
- Several single spectral resolution modes
- > 1 or 2 polarizations, no full polarization
- Amplitude calibration: 5% B3, 10% B6 and B7, 20% B9
- At most 30% of the available time for the first call (period Oct11-Jun12)
- No Solar observations

Image Fidelity - Early Science

Spectral modes for Cycle 0

FDM mod	des	Resolution (kHz)→						
Band-	MHz	12	25	50	100	200	400	800
width 7200								2
\downarrow	3600						2	
	1800					2		
	900				2			
	450			2				
	225	1	2					

TDM modes		Resolution (MHz) →
Band-	MHz	30
width	7200	2

The number in each cell shows the number of polarization products provided: 1 – single pol, 2 – both polarizations.

General description of modes and performance in « The ALMA Correlators » A. Baudry, ALMA Newsletter, Jan. 2011, No 7 <u>http://www.almaobservatory.org/en/outreach/newsletter/252-newsletter-no-7</u>

ALMA Early Science

Limitations to be kept in mind:

- Limited number of antennas:
 - · limited sensitivity as compared to full ALMA
 - imaging requires Earth rotation synthesis
- Limited angular resolution
- No multi resolution available
- Limited time available for science observations
- ALMA capabilities ramping up FAST
- ALMA ES capabilities and constraints are best suited for limited scope projects (as opposed to large scale surveys)
- Typical project for ES should be few hrs (4-10) and deliver result!

ALMA beyond ALMA

- ALMA will allow transformational science thanks to the sensitivity, angular resolution, spectral coverage and image fidelity, but...
- The baseline ALMA project will only achieve a fraction of the full potential of the site and instrument
- Incomplete Receiver Complement
- Limited Wide Field Capabilities
- Limited Correlator and Data Rate Capabilities
- Extended baselines (30-50km), VLBI (200-10000km)
- Advanced Calibration, Software, Science Tools....

Examples of Scientific Limitations

- Limited Band 5 Complement
 - > Eu FP6 6 B5: just a glimpse at B5
 - ➢ Water in the Universe
 - > [CII] in the range 8 < z < 11
- <u>No Band 1 & 2</u>
 - High-z low excitation CO
 - Sunyaev-Zeld'ovich effect
 - Dust Evolution in Protoplanetary Disks
 - Deuterated molecules, low excitation conditions
- Limited correlator/bandwidth/datarate capabilities
 - Line surveys, chemistry studies very time consuming
- <u>Continuum Wide Field Mapping Efficiency</u>
 - SZ and Molecular Clouds applications very time consuming
 - Instantaneous wide field of view for solar physics

183 GHz H2O maser in NGC3079 (SMA, Humphreys et al 2005)

ALMA + mmVLBI

+ES

The ALMA Development Program

- ALMA development budget is proposed to ramp up starting in 2013 to reach ~12M\$/yr from ~2015
- ALMA Upgrade Studies in Europe:
 - Preparations for ALMA B5 Full Production
 - Upgrade Options for ALMA B9
 - Phasing up ALMA for mm-VLBI
 - Design and components for ALMA B2
 - Scientific opportunities for supra-THz interferometry with ALMA
 - Options for upgrading the instantaneous bandpass
- Science Case, Technical Readiness, Cost, Timeline
 - Getting ready to implement the upgrades from 2013-2015

Summary

ALMA is here!

- Call for Early Science Proposals with capabilities well beyond current instruments - Deadline 30 June 2011
- ALMA ES is just the beginning!
 - Cycle 1 Deadline Q1 2012 will already be a huge step in sensitivity and other capabilities (resolution, observing modes, etc.)
 - Full Science Operations End of Construction in a couple of years
- ALMA is a long lifetime observatory with a healty Development Plan