Planet formation in protoplanetary disks

Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Suggested literature

- "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP
- "Protostars & Planets V" (2005), Part VI, eds. B. Reipurt et al., Univ. Arizona P.
- "Exoplanets: Detection, Formation, ..." (2010), ed. J. Mason, Springer
- Ph. J. Armitage: "Astrophysics of Planet Formation" (2010), CUP
- "Planet Formation: Theory, Observations & Experiments" (2006), eds. H. Klahr & W. Brandner, CUP

Outline

- Detections and characteristics of exoplanets
- Formation & migration of planets
- Signatures of planet formation to be detected with ALMA

I. Detection & characteristics of exoplanets

Definitions

• Planet: a gravitationally bound body that is not massive to enable thermonuclear fusion of D

- I $M_{Earth} = 6 \ 10^{27} \text{ gm} = 3 \ 10^{-6} \ M_{Sun}$
- Upper mass limit: ~13 M_{Jp} (317 M_{Earth})
- Extrasolar planet: a planet orbiting (a) star(s) or stellar remnants
- Terrestrial: Mercury, Venus, Earth, Mars (0.06–1 M_{Earth})
- Gas giants: Jupiter, Saturn, Uranus, Neptune (14–317 M_{Earth})

Planets of the Solar System

- Major semi-axes: 0.4–30 AU (1 AU = 1.5 10¹³ cm)
- Low eccentricities: 0.07–0.2 (0 circular orbit, I parabolic orbit)
- Rotate in one plane
- Terrestrial planets: rocky materials (high-T condensates), ~5 g/cm³
- "Ice" planets (Uranus, Neptune): ~10 M_{Earth} rock-ice core + gas, ~1.5 g/cm³
- Gas giants (Jupiter, Saturn): ~10–20 M_{Earth} rock-ice core + gas, ~1 g/cm³
- Stable orbital configuration: ~10 Gyr

Planets of the Solar System

Lissauer (2004)

Extrasolar planets: detection

- $M_{planet}/M_* \sim 10^{-6} 10^{-2}$, $R_{planet}/R_* \sim 10^{-2} 10^{-1}$, $L_{planet}/L_* < 10^{-5}$ (IR)
- First 2 exoplanets: PSR B1257+12 by Wolszcsan & Frail in 1992
- First exoplanet around MS star: 51 Peg by Mayor & Queloz in 1995
- June 15, 2011: 471 planetary systems, 562 planets, 57 multiple planet systems

http://exoplanet.eu

Detection techniques

- Radial velocities:
 - periodic Doppler shifts (Jupiter = I3m/s),
 - current limit is 1 m/s,
 - not restricted by distance
 - Msin(i), a
- Transits:
 - ~10% of stars,
 - Limit is ~few M_{Earth} (Kepler)
 - high rate of false alarms,
 - i, R, a
- Direct imaging:
 - R, separation
 - farthermost planets
- Gravitational microlensing:
 - M, separation
 - not restricted by distance
 - single event

Sensitivity of detection techniques

Years of discovery

Masses

Radii

Semi-major axes

Eccentricities

Stellar metallicities

I. Detection & characteristics of exoplanets: Summary

- >10% of all stars have planets
- Formation probability related to stellar Fe/H
- a: 0.01–500 AU
- M: 4-4000 M_{Earth}
- e: 0–0.9
- 30% in multi-star systems
- Multiple systems: 6 planets in 55 Cnc
- A planet around exogalactic star: HIP 13044
- Planets around pulsars

II. Formation & migration of planets

Planet formation scenarios:

Core accretion from planetesimals & embryos in "old" disk: ~10⁶–
10⁸ years, favors terrestrial planets

• Gravitational instabilities in "young" massive disk: ~100 years, favors outer Jupiters

From dust till planetesimals

Williams & Cieza (2011)

Steady growth along with disk evolution

- A miracle occurs: planetesimals ~1 km (~10⁴ years), ~10¹² at 1 AU
- Runaway/"oligarchic" growth: Mars-size embryos ~10³ km (10⁴–10⁵ years)
- Late-stage accretion via impacts: Earth-like planets $\sim 10^4$ km (10⁸ years)
- Inner, hot disk: only refractory solids, H & He lost
- Outer, icy disk: gas giants ~10⁵ km, core accretion of ~10 M_{Earth} (10⁶ years) + accretion of massive gas envelope (10⁷–10⁸ years)
- Less massive "ice" planets lost some gas
- Growth in mass by 45 orders of magnitude
- Restricted by lifetime of a disk: I-10 Myr

Runaway growth

- Planetesimals evolution is collision-dominated
- Collisional cross-section with a body of mass M and a radius R:

 $dr/dt = \Sigma \Omega/\rho$

- Earth would grow in 20 Myr, outer planets >100 Myr
- Gravity increases cross-section (focussing):

$$dr/dt = \Sigma \Omega / \rho (1 + \Theta),$$

 $\Theta = V_{\text{escape}}^2 / V^2$

• Earth forms within 10⁵–10⁶ years

Core accretion: Jupiter

Pollack et al. (1996)

Hints for migrations

- At 0.1 AU no minerals can condense, yet hot Jupiters exist
- Planet(s) within a gas disk: density waves, repulsive gravitational torques between inner & outer disk
- Example: satellites guarding icy rings around Saturn
- Separate regimes for low- and high-mass planets

Planet-disk interactions: Type I migration

- Type I migration: back-reaction from tidally generated spiral waves
 - 0.1-10 M_{Earth},
 - no gap,
 - outer disk torques dominate,
 - typically inward (chaotic),
 - planets at resonant orbits: $P_i/P_j=n/k$,
 - timescale: ~10⁴ years

Planet-disk interactions: Type II migration

- •Type II migration:
 - >300 M_{Earth} ,
 - gap opens,
 - residual gas flow over the gap,
 - migration along with viscous disk evolution,
 - inward,
 - timescale: ~10⁵ years

Formation of a giant planet: simulations

- Fixed orbit, exponential growth: $3M_{Earth}$ till $10M_{Jp}$
- 2D hydrodynamical disk structure
- Gap opening at ~IM_{Jp}

http://jila.colorado.edu/~pja/planet_migration.html

Halting planetary migration

- Turbulence
- Planet-planet scattering
- Strong magnetic fields
- Strong variations in density & T
- Formation of a massive planet traps less massive ones

Steady growth scenario

- Observational support: planet-metallicity correlation
- Planets in multi-star systems & odd orbits
- Varying ratio of elements in the core & envelope
- Jupiter can be made within $\sim I I0$ Myr
- Timescales: I $M_{Jp} @ 5 AU$, $t_{accr} \sim I0t_{migr} \Rightarrow protoplanet$ falls into the star before it accretes I0 M_{Earth}
- Migration has to be 10x slower
- No evidence for migration in Solar System
- Cannot explain presence of planets at r>100 AU

Disk instabilities

$$Q = \frac{\Omega_{\rm K} c_{\rm s}}{\pi G \Sigma}$$

 Gravitational instabilities leads to fragmentation of disk (dust) when Q<I and cooling is ~orbital time

- $\bullet \sim I \ M_{Jp}$ fragments of gas and dust start to collapse
- Rapid dust grow & sedimentation leads to solid core
- A gap in disk gas opens
- t_{acc}: ~100 years!
- UV radiation removes gas from outermost planets

Disk instabilities scenario

- Minimum-mass solar nebula: $Q \sim 60/r^{1/4}$, very stable!
- More massive younger disk, cold outer regions
- Observational support: presence of planets at r>100 AU
- Rapid inward migration is not an issue
- Not restricted by disk lifetime
- Works only for large outer planets
- Cannot explain varying composition of gas/core

II. Formation of planets: Summary

- Two plausible mechanisms: gravitational instabilities & steady growth
- Can explain presence of hot Jupiters & far-away planets
- Can explain Fe/H correlation & exoplanets at odd orbits
- Type I migration: ~Earth-like planets, typically inward
- Type II migration: ~Jupiter-like planets, inward
- Migration is too fast
- Jupiter-like planets open gaps in disk gas

III. The Brave New World: ALMA

- Atacama Large Millimeter Array (2013)
- $50 \times 12m + 12x7m + 4x12m$
- Spatial resolution: 0.005"
- Spectral resolution: <0.05 km/s
- 8 GHz bandwidth for continuum
- 86 950 GHz (250 µm 1 mm)
- x100 resolution
- x20 sensitivity

ALMA studies of planet formation:

- Gaps & inner holes opened by (proto-)planets
- Vorticities
- Circumplanetary disks?
- Asymmetries in dust distributions in "debris" disks
- Large sample of transitional & "debris" disks
- Not-so-close star-forming regions

ALMA: Spiral waves (density & kinematics)

ALMA: dust clumps

- Asymmetries in dust distributions in "debris" disks
- Dust trapped in resonances due to planet-disk interactions

ALMA: large-scale vorticities

Disk density perturbed by baroclinic instability

Wolf & Klahr (2002)

ALMA: gaps in disks

Simulations: 0.5 M_{Sun}, I M_{Jp} @ 5 AU, 950 GHz, 2 AU gap

Wolf & D'Angelo (2005)

ALMA: circumplanetary disks?

Simulations: 0.5 $M_{Sun},\,I\,\,M_{Jp}$ @ 5 AU, 950 GHz

Wolf et al. (2007)