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« History
« Generalities about comets
- Dynamics
- Origin
- Cometary nuclei
- Cometary atmospheres

e Chemistry of comets
- Chemical diversity

- Extended source

- Advanced chemistry

* Ortho-to-para ratio
 Isotopologues

June 2011 J. Boissier, Astrochemistry with ALMA



June 2011 J. Boissier, Astrochemistry with ALMA K}



June 2011 J. Boissier, Astrochemistry with ALMA 4



‘b’Tcl, /-\SL?O'UHcllusuy Wil



Generalities about comets: Images
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Generalities about comets: History

Comet painted in a chirstmas scene by Giotto Comet Halley on Bayeux tapestry (XI century)
Capella degli Scrovegni (XIV century)
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Generalities about comets: History

» History of cometary science

- 1577. Tycho Brahe measures the paralax of a
comet and shows it is beyond the Moon

- 16™*: Kepler find orbit laws, Newton works on
comet motions

- 1705: Halley identifies several apparitions of the
same comet and predicts its next approach
(observed in 1758)

Dynamical studies

-«

- 1819: Arago polarimetric observations show that
comets reflect the Sun's light

- 1850-1900: Photographic and Spectroscopic
observations of comets

- 1950: Whipple imagines the dirty snowball model

Physical studies

\J
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Generalities about comets: Global picture

lon tail (100 10° km)

H, cloud (100 10° km)

Solid Icy Nucleus (few km) - Pl
and coma (0.1 10° km) Dust tail (10 10° km)
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Generalities about comets: Dynamics

e 2 dynamical classes

aaaturn

- Ecliptic comets
« Short period, aphelion around Jupiter orbit
» Orbit in the ecliptic plane
« Tempel 1, Rosetta's Target

- Nearly ISOtrOp|C Comets Earth Distance: 1.649

Sun Distance :2.55 AU

Nov. 22, 2007

» Long period, far distant aphelion (when it exist)
« Random inclination
» Halley, Hale-Bopp, Hyakutake

e 2 reservoirs of comets
- Scattered disk in the Kuiper belt /

« Near ecliptic plane, g>30 AU [
Pl pians. ¢ ® T ee°
- Oort Cloud / -

« Isotropic, g up to 10° AU

Hale-Bopp

June 2011 J. Boissier, Astrochemistry with ALMA 10



Generalities about comets: Dynamics

« 2 dynamical classes

- Ecliptic comets
- Nearly Isotropic Comets

e 2 reservoirs of comets

- Planetesimals that can be sent
back to the inner Solar System
and become comets

- Scattered disk in the Kuiper belt
* Near ecliptic plane, g>30 AU

- Oort Cloud
« Isotropic, g up to 10° AU

« 3" (recent) class

- Main belt comets Oort Cloud
* lcy bodies formed in the inner SS ¢ cuianey

drawing adapted from
Donald K. Yeoman's
illustraton (NASA, JPL)

Orbit of Binary
‘Kuiper Belt Object
998 WW31
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« Origin in the Solar System formation

- Planetesimals in the outer regions of the
disk that escaped the planet formation

» Preserved in the Kuiper Belt
» Ejected to the Oort Cloud

e Comets come back as remnants of the Planet
formation era.

« Their composition and structure may provide
information about the physical and chemical
conditions in the Early SS.

« Cometary impacts could have impacted the
evolution of planets.

100 AL ¥
—_—

Pre-main-sequence star.
remnant disk
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The dirty snowball: Nucleus

- Physical properties
* km sized objects (~1 km to ~40 km)
« Low density (~0.6 g/cm?®)
» Low albedo (0.04)
- Structure
 Different aspects suggests heterogene structure
* Low cohesion (comet splitting)
- Composition
 Ice (water + volatiles)
» Refractory dust (silicates)

- Studies

» Remote studies difficult (distance and/or coma)
» Space missions expensive
» Detailed study of the atmosphere helps

June 2011 J. Boissier, Astrochemistry with ALMA

Wild 2 (5 x 5 km) as seen by
Star Dust (2004)

Hartley 2 (2x0.7 km) as seen by
Deep Impact (2010)
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Nucleus images

P
5 km
Borelly (8 x 3 x 3 km) as seen by wild 2 (5 x 5 km) as seen by
Deep Space (2001) Star Dust (2004)
Halley (14 x 7 x 7 km) as seen by the Giotto spacecraft (1986) Tempel 1 (5 x 7 km) as seen by Hartley 2 (2x0.7 km) as seen by

Deep Impact (2005) Deep Impact (2010)
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The dirty snowball: The Coma

« Gas and Dust released from the nucleus . =

« Qutgassing T el
— Ice sublimation .

- Mainly driven by H,O

......

« CO alarge heliocentric distances

« Other species in separated ice or trapped in- ) %
water/CO ? R v

- Grains are driven by the gas "??4'*.{'?'3#"%‘-“"7 ‘W‘* i L il
. SUN
« Coma chemistry
- Only destructive chemistry / / /
. . . Parent Daughter
- Photodissociation ucteus products. " products
. HCN —» H+CN
- Thermal degradation cs, —» cs

SO, ——» SO — S+0

(H,CO), —» H,CO —»
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« Haser Model

- Density n [km™] depends on the distance to the
nucleus (r [km])

- Isotropic outflow with constant velocity (v.,, [km s™])
- 2 cases: parent and daughter products
- Q = production rate [molecule s]

- L = life scalelength [km]
« Typical distance beyond which molucules are dissociated

L Parent

Nnlr) = e P Nucleus i
p( ) 47‘- TQ Uexp pH(::NtS
CS,

L T o

n4(r) = g (eTr—e
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SUN

. /]

Daughter

products
H+ CN
CS

sO — S5+0

H,CO —»
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« Refractory
- Amorphous and Cristalline silicates

- Organic grains "0

Co

 Volatiles N
- Abundances:Amol=Qmol/C)H2O

CH3OH

H,CO
HOCH,CH,0H
HCOOH

- High level of chemical diversity

- Complex molecules Q
« Ethylene glycol 3:2:2
« More complex molecule ? L o
- Minor species e
- Isotopologues (Water, HCN) Con
« HNC

ocs
S0,
cs,

June 2011 J. Boissier, Astrochemistry with ALMA

Parent molecules in comets

1 10"
relotive obundonces [% relotive to water]



« Abundancies vary a lot from a comet to another
- No link with dynamical classes
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« Abundancies vary a lot from a comet to another

- No link with dynamical classes
- Chemical classes ?

Abundances relative to HCN in comets p— _
ez |Halley-type

22P/Kopff
21P/Giacobini—Zinner

o | Jupiter-family

73PISchwassmann-Wachmann 3

»~
o

V)
o

Oort cloud

=
(&S]
=
~
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<>
fa o
(&)

C/199501 (Hale—Bopp)
20

Biver et al. 2002, E.M.P. 90, 323

H,CO / HCN
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Composition: Chemical diversity

« Abundancies vary a lot from a comet to another

- No link with dynamical classes

- Chemical classes ?

- Reflects the time and the place of formation
- Reflects also the evolution of the comet

- Reflects the mixing of the Solar Nebula

* Ice and refractories : radial mixing
« of small grain and gas ?
« of planetesimals ?
- Heterogeneity of some nucleus

 Need for more statistics
- Ecliptic comets
* Need to inlcude more species (including more complex molecules)

June 2011 J. Boissier, Astrochemistry with ALMA 20



« QOrigin of cometary material

- Molecules created by similar chemistry
* lon-Molecule or grain surface reactions

 Preserved from insterstellar Medium or C:f;
created in the Solar Nebula ? HOCH,CH,OH

HCOOH
HCOOCH;
CH3CHO
NH,CHO

NH
HCN
HNCO
HNC
CH4CN
HCsN

=
12
=
3
Z
S
=

[X]/[CH5OH] (ISM)
LAL/ LAUN] (M)

107" 10" 102 10° 10*
[X1/[CHx0H] (Hale—Bopp)

1072 107"
relotive abundances [% relative to water]
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Composition: Extended sources

- Photodissociation

» Main extended source in comet

« Creates molecules, radicals, ions, atoms (OH, CN, CS,...)
- Qrganic grain degradation

- H,CO and POM degradation

- Unidentified
« HNC (C,H,and NH, polymers?)
« SO (?)
« CO from the nucleus or from organic grair / /
Nucleus products — products

HCN ——» H+CN

cs, —» Cs

SO, ——» SO — S+0

(H,CO), —» H,CO —»

June 2011 J. Boissier, Astrochemistry with ALMA
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= Giotto measurements
e Q) JQ)=1.8%

« 2" most abundant CHO molecules
- Extended source in most observations L o ana o maset

* No suitable parent in known large molecules T
» Degradation of POM (polyoxymethylene) ? g
S
RN, N "ok W Nera,
n S Dswsmmnesem,
- Experiments on POM degradation [
. Create only gaseous H,CO i b

» Measure kinematics of the degradation

- Back to observations

« OK with Halley radial distribution
- Cottin et al. 2004

« OK with Hale-Bopp evolution with r,
- Fray et al. 2006
- More comets, parent scalength ?
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« Unexpected metastable isomer of HCN

June 2011

Slightly extended source
HNC/HCN depends onr,

* Not preserved from ISM
» Thermal dependent process
* lon chemistry ?
High HNC in moderately active comets

* NO ion chemistry
« Thermal degradation of polymers ?

73P/SW3

« HNC depletion, normal HCN
« Depletion of C H, and NH,

=
Z

- Degradation of C_H, and NH_ polymers ?
« Lis et al. 2007
More comets, parent scalength ?

J. Boissier, Astrochemistry with ALMA

HNC/HCN vs heliocentric distance
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Composition: Extended sources

- Photodissociation

« Main extended source in comet

« Creates molecules, radicals, ions, atoms (OH, CN, CS,...)
- Qrganic grain degradation

- H,CO and POM degradation

- Unidentified
« HNC (C,H,and NH, polymers?)
« SO (7?)

- Debated

» CO from the nucleus or from organic grains ?
- Needs more studies SUN
» Observations with high spatial resolution / /

Parent EUN G

« Monitoring over r, Nucleus products " products

HCN — H+CN

» Synergies with chemical models and lab experiments s, —» s

SO, —» SO — S+0

(HCO), —> HLCO —>

June 2011 J. Boissier, Astrochemistry with ALMA
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 Ortho and Para states for molecules
with symmetric H atoms

e Measurements

- Different nucleus spin configurations
- H,0O, H,S, H,CO, CH,OH,...
- Different energy levels and spectral lines

Spin /=0 Spin /=1

Fig 1. Schemalic representation of ortho and para
vialer and Muclear Spin Conversion (NSC).

- T~ 30 Kin H,0 and NH,

« Ortho-to-Para ratio fixed in solid phase

June 2011

— Nucleus evolution: NO
- Formation conditions of the molecules ?

- Fractionation on grains ?
 ISM or Comet ?

J. Boissier, Astrochemistry with ALMA
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Composition: Isotopic diagnostic

» Measuring isotopic ratios allows to:

- Probe the origin of cometary material

- Assess the role of cometary impacts in
planetary evolution

 |sotopologues difficult to observe

- Limited set of measurements so far
- Mainly based on Oort cloud comets
- Few molecules

June 2011 J. Boissier, Astrochemistry with ALMA
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« HDO in few comets, mainly Oort Cloud
- D/H ~ 3-4 x 10* ~ 2 x Earth Value
 DCN in Hale-Bopp
- D/H~2.3x10°

e Strong enrichments require ion-molecule
or grain surface reactions

- Strong constraints on the early history of
the Solar System

e Ocean water does not come from comets

S A W

Mars Jupiter  Saturn  Uranus Comets
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93+ 10
a5+ 12
M1 x£12
323 £ 46
140 £ 35
518 £ 45
470 £ 40
450 £ 50
27 £ 3
23 LB

4 comets
1PMalley
Hale-Bopp
Hale-Bopp
Hale-Bopp
1PMalley
1PMalley
153P
1PMalley
1PMalley
Hale-Bopp

Wyckoff et al. (2000)
Kleine et al. {1995)
Jewitt et al. (1997)
Jewitt et al. (1997)
Arpigny et al. (2003)
Balsiger et al. (1995)
Eberhardt et al. {1995)

Lecacheux et al. (2003)
Jewitt et al. (1997)

Altwegg (1996)

Crovisier et al. (2004)

- Most recent results about N are *N/™N = 140 in HCN in Holmes
 Bockelée-Morvan et al. 2008

N enrichment in the outer regions of the Solar Nebula
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Composition: Isotopic diagnostic

» Measuring isotopic ratios allows to:

- Probe the origin of cometary material

» lon-molecule, grain surface reactions
e Enrichment in ™N in the Solar Nebula

— Assess the role of cometary impacts in
planetary evolution

» Water on Earth does not come from comets
 |sotopomers difficult to observe

- Limited set of measurements so far
- Mainly based on Oort cloud comets
- Few molecules

 More observations required

- More comets, more molecules
- Detailed comparison to other objects

June 2011 J. Boissier, Astrochemistry with ALMA
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Evolution of cometary material

* |s cometary material still primordial ?

« Evidences for evolution

- Low albedo: crust

- Surface erosion

- Splitting, exploding, dying comets
* Processes:

- Formation time
» Collisions ?
- In reservoirs
» Differentiation: No
« Cosmic rays
— During orbits:
« Successive perihelion passages
 Volatile depletion ?

June 2011 J. Boissier, Astrochemistry with ALMA
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Comets are remnants of the planet formation era

- Their study should bring insight to the physical and chemical
conditions in the early Solar System

The nucleus is a dirty, sublimating snowball

- Water ice, volatiles, organic grains, refractories

Direct study difficult

- Detailed study of the coma to constrain nucleus properties

Complex chemistry

- Chemical diversity
- Extended sources
- Complex species

June 2011

J. Boissier, Astrochemistry with ALMA
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Open questions

« QOrigin of cometary material
- Preserved from ISM vs processed in the Solar Nebula
» Detailed composition
- Most complex molecules
- Organic grains
- What could have been brought to the Earth ?
» Relation with Solar Nebula and circumstellar disk chemistry
« Evolution of cometary material
— Are the comet still primordial ?
» Nucleus structure ?
- lIces, clatrates, homogeneity ?
Nucleus processes ?
- Jets, comet splits, outbursts

June 2011 J. Boissier, Astrochemistry with ALMA
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