Comets with ALMA

I. The comets and their chemistry II. Cometary Observations

Jérémie Boissier ESO/Italian ARC (INAF-IRA)

Part I

- History
- Generalities about comets
 - Dynamics
 - Origin
 - Cometary nuclei
 - Cometary atmospheres
- Chemistry of comets
 - Chemical diversity
 - Extended source
 - Advanced chemistry
 - Ortho-to-para ratio
 - Isotopologues

Generalities about comets: Images

Generalities about comets: History

- Comets are observed since centuries
- Mainly for astrology up to 1500

Comet painted in a chirstmas scene by Giotto Capella degli Scrovegni (XIV century)

First comet Atlas (-IV century, China)

Comet Halley on Bayeux tapestry (XI century)

Generalities about comets: History

History of cometary science

Dynamical studies

- 1577: Tycho Brahe measures the paralax of a comet and shows it is beyond the Moon
- 16**: Kepler find orbit laws, Newton works on comet motions
- 1705: Halley identifies several apparitions of the same comet and predicts its next approach (observed in 1758)

- 1819: Arago polarimetric observations show that comets reflect the Sun's light
- 1850-1900: Photographic and Spectroscopic observations of comets
- 1950: Whipple imagines the dirty snowball model

Generalities about comets: Global picture

Generalities about comets: Dynamics

2 dynamical classes

- Ecliptic comets
 - Short period, aphelion around Jupiter orbit
 - Orbit in the ecliptic plane
 - Tempel 1, Rosetta's Target
- Nearly Isotropic Comets
 - Long period, far distant aphelion (when it exist)
 - Random inclination
 - Halley, Hale-Bopp, Hyakutake
- 2 reservoirs of comets
 - Scattered disk in the Kuiper belt
 - Near ecliptic plane, q>30 AU
 - Oort Cloud
 - Isotropic, q up to 10⁵ AU

Generalities about comets: Dynamics

- 2 dynamical classes
 - Ecliptic comets
 - Nearly Isotropic Comets
- 2 reservoirs of comets
 - Planetesimals that can be sent back to the inner Solar System and become comets
 - Scattered disk in the Kuiper belt
 - Near ecliptic plane, q>30 AU
 - Oort Cloud
 - Isotropic, q up to 10⁵ AU
- 3rd (recent) class
 - Main belt comets
 - Icy bodies formed in the inner SS

Generalities about comets: Origin

- Origin in the Solar System formation
 - Planetesimals in the outer regions of the disk that escaped the planet formation
 - Preserved in the Kuiper Belt
 - Ejected to the Oort Cloud
- Comets come back as remnants of the Planet formation era.
- Their composition and structure may provide information about the physical and chemical conditions in the Early SS.
- Cometary impacts could have impacted the evolution of planets.

The dirty snowball: Nucleus

Physical properties

- km sized objects (~1 km to ~40 km)
- Low density (~0.6 g/cm³)
- Low albedo (0.04)

Structure

- Different aspects suggests heterogene structure
- Low cohesion (comet splitting)

Composition

- Ice (water + volatiles)
- Refractory dust (silicates)

- Studies

- Remote studies difficult (distance and/or coma)
- Space missions expensive
- Detailed study of the atmosphere helps

Wild 2 (5 x 5 km) as seen by Star Dust (2004)

Hartley 2 (2x0.7 km) as seen by Deep Impact (2010)

Nucleus images

J. Boissier, Astrochemistry with ALMA

The dirty snowball: The Coma

Gas and Dust released from the nucleus

- Outgassing
 - Ice sublimation
 - Mainly driven by H₂O
 - CO a large heliocentric distances
 - Other species in separated ice or trapped in water/CO?
 - Grains are driven by the gas
- Coma chemistry
 - Only destructive chemistry
 - Photodissociation
 - Thermal degradation

The dirty snowball: Coma most simple model

Haser Model

- Density n [km⁻³] depends on the distance to the nucleus (r [km])
- Isotropic outflow with constant velocity (vexp [km s⁻¹])
- 2 cases: parent and daughter products
- \mathbb{Q} = production rate [molecule s⁻¹]
- L = life scalelength [km]

• Typical distance beyond which molucules are dissociated

$$n_p(r) = \frac{Q}{4\pi r^2 v_{exp}} e^{-\frac{r}{L_p}}$$

$$n_d(r) = \frac{Q}{4\pi \, r^2 \, v_{exp}} \frac{L_d}{L_p - L_d} (e^{\frac{r}{L_p}} - e^{\frac{r}{L_d}})$$

Composition: Overview

Refractory

- Amorphous and Cristalline silicates
- Organic grains
- Volatiles
 - Abundances: $A_{mol} = Q_{mol}/Q_{H2O}$
 - High level of chemical diversity
 - Complex molecules
 - Ethylene glycol
 - More complex molecule?
 - Minor species
 - Isotopologues (Water, HCN)
 - HNC

Parent molecules in comets

Composition: Chemical diversity

- Abundancies vary a lot from a comet to another
 - No link with dynamical classes

Composition: Chemical diversity

- Abundancies vary a lot from a comet to another
 - No link with dynamical classes
 - Chemical classes?

Composition: Chemical diversity

- Abundancies vary a lot from a comet to another
 - No link with dynamical classes
 - Chemical classes ?
 - Reflects the time and the place of formation
 - Reflects also the evolution of the comet
 - Reflects the mixing of the Solar Nebula
 - Ice and refractories : radial mixing
 - of small grain and gas?
 - of planetesimals?
 - Heterogeneity of some nucleus
- Need for more statistics
 - Ecliptic comets
- Need to inloude more species (including more complex molecules)

Composition: Comparison to other objects

- Origin of cometary material
 - Analogies with hot cores and ISM
 - Molecules created by similar chemistry
 - Ion-Molecule or grain surface reactions
 - Preserved from insterstellar Medium or created in the Solar Nebula ?

Composition: Extended sources

- Photodissociation
 - Main extended source in comet
 - Creates molecules, radicals, ions, atoms (OH, CN, CS,...)
- Organic grain degradation
 - H₂CO and POM degradation
- Unidentified
 - HNC (C₂H₂ and NH₃ polymers?)
 - SO (?)
- Debated
 - CO from the nucleus or from organic grain

Focus on H₂CO: The role of the laboratory

- 2nd most abundant CHO molecules
 - Extended source in most observations
 - No suitable parent in known large molecules
 - Degradation of POM (polyoxymethylene) ?

- Experiments on POM degradation
 - Create only gaseous H₂CO
 - Measure kinematics of the degradation
- Back to observations
 - OK with Halley radial distribution
 - Cottin et al. 2004
 - OK with Hale-Bopp evolution with r_h
 - Fray et al. 2006
- More comets, parent scalength?

Focus on HNC: The role of chemical models

- Unexpected metastable isomer of HCN
 - Slightly extended source
 - HNC/HCN depends on r_h
 - Not preserved from ISM
 - Thermal dependent process
 - Ion chemistry?
 - High HNC in moderately active comets
 - NO ion chemistry
 - Thermal degradation of polymers?
 - 73P/SW3
 - HNC depletion, normal HCN
 - Depletion of C₂H₂ and NH₃
 - Degradation of C₂H₂ and NH₃ polymers ?
 - Lis et al. 2007
 - More comets, parent scalength?

HNC map observed with the Plateau de Bure

Composition: Extended sources

- Photodissociation
 - Main extended source in comet
 - Creates molecules, radicals, ions, atoms (OH, CN, CS,...)
- Organic grain degradation
 - H₂CO and POM degradation
- Unidentified
 - HNC (C₂H₂ and NH₃ polymers?)
 - SO (?)
- Debated
 - CO from the nucleus or from organic grains?
- Needs more studies
 - Observations with high spatial resolution
 - Monitoring over r_h
 - Synergies with chemical models and lab experiments

Composition: Ortho-to-Para ratios

- Ortho and Para states for molecules with symmetric H atoms
 - Different nucleus spin configurations
 - H₂O, H₂S, H₂CO, CH₃OH,...
 - Different energy levels and spectral lines
- Measurements
 - T_{spin} ~ 30 K in H_2 O and NH_3
- Ortho-to-Para ratio fixed in solid phase
 - Nucleus evolution: NO
 - Formation conditions of the molecules ?
 - Fractionation on grains ?
 - ISM or Comet ?

H_2O

water and Nuclear Spin Conversion (NSC).

Composition: Isotopic diagnostic

- Measuring isotopic ratios allows to:
 - Probe the origin of cometary material
 - Assess the role of cometary impacts in planetary evolution
- Isotopologues difficult to observe
 - Limited set of measurements so far
 - Mainly based on Oort cloud comets
 - Few molecules

Composition: Deuteration

- HDO in few comets, mainly Oort Cloud
 - D/H ~ 3-4 x 10⁻⁴ ~ 2 x Earth Value
- DCN in Hale-Bopp
 - D/H $\sim 2.3 \times 10^{-3}$
- Strong enrichments require ion-molecule or grain surface reactions
 - Strong constraints on the early history of the Solar System
- Ocean water does not come from comets

Composition: Others isotopes

93 ± 10 95 ± 12	4 comets 1P/Halley	Wyckoff et al. (2000)
95 ± 12	1D/Halloy	
	тг/пан еу	Kleine et al. (1995)
N] 111 ± 12	Hale-Bopp	Jewitt et al. (1997)
323 ± 46	Hale-Bopp	Jewitt et al. (1997)
140 ± 35	Hale-Bopp	Arpigny et al. (2003)
)] 518 ± 45	1P/Halley	Balsiger et al. (1995)
470 ± 40	1P/Halley	Eberhardt et al. (1995)
450 ± 50	153P	Lecacheux et al. (2003)
27 ± 3	1P/Halley	Jewitt et al. (1997)
23 ± 6	1P/Halley	Altwegg (1996)
5] 16 ± 3	Hale-Bopp	Crovisier et al. (2004)
	N] 323 ± 46 140 ± 35 D] 518 ± 45 D] 470 ± 40 D 450 ± 50 27 ± 3 23 ± 6	N] 323 ± 46 Hale-Bopp 140 ± 35 Hale-Bopp 518 ± 45 1P/Halley 470 ± 40 1P/Halley 450 ± 50 153P 27 ± 3 1P/Halley 23 ± 6 1P/Halley

- Most recent results about ¹⁵N are ¹⁴N/¹⁵N = 140 in HCN in Holmes
 - Bockelée-Morvan et al. 2008
- ¹⁵N enrichment in the outer regions of the Solar Nebula

Composition: Isotopic diagnostic

- Measuring isotopic ratios allows to:
 - Probe the origin of cometary material
 - Ion-molecule, grain surface reactions
 - Enrichment in ¹⁵N in the Solar Nebula
 - Assess the role of cometary impacts in planetary evolution
 - Water on Earth does not come from comets
- Isotopomers difficult to observe
 - Limited set of measurements so far
 - Mainly based on Oort cloud comets
 - Few molecules
- More observations required
 - More comets, more molecules
 - Detailed comparison to other objects

Evolution of cometary material

- Is cometary material still primordial?
- Evidences for evolution
 - Low albedo: crust
 - Surface erosion
 - Splitting, exploding, dying comets
- Processes:
 - Formation time
 - Collisions?
 - In reservoirs
 - Differentiation: No
 - Cosmic rays
 - During orbits:
 - Successive perihelion passages
 - Volatile depletion ?

Summary

- Comets are remnants of the planet formation era
 - Their study should bring insight to the physical and chemical conditions in the early Solar System
- The nucleus is a dirty, sublimating snowball
 - Water ice, volatiles, organic grains, refractories
- Direct study difficult
 - Detailed study of the coma to constrain nucleus properties
- Complex chemistry
 - Chemical diversity
 - Extended sources
 - Complex species

Open questions

- Origin of cometary material
 - Preserved from ISM vs processed in the Solar Nebula
- Detailed composition
 - Most complex molecules
 - Organic grains
 - What could have been brought to the Earth?
- Relation with Solar Nebula and circumstellar disk chemistry
- Evolution of cometary material
 - Are the comet still primordial?
- Nucleus structure ?
 - Ices, clatrates, homogeneity?
- Nucleus processes ?
 - Jets, comet splits, outbursts