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How do we study Cosmic Ray (CR)
induced chemistry ?

To study CR chemistry we need to;

1. Produce beams of CRs — protons, alpha particles and electrons

2. Accelerate CRs to high energies
3. Prepare targets for collisions — gas phase ‘easy’
- condensed/ice phase harder

Temperature

Morphology
Compound mixture of ices

All needs to be prepared in ultra high vacuum to mimic space
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How do we study Cosmic Ray (CR)
induced chemistry ?

To study CR chemistry we need
to;

1. Produce beams of CRs —
protons, alpha particles and
electrons

2. Accelerate CRs to high energies

Use particle accelerators - Van der
Graf Accelerators
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Modern version ECRIS Ion source

9.0 — 10.5 GHz Electron Cyclotron Resonance Ion Source at Belfast

e Produce beams of heavy ions in multiply charged state e.g. C+ to
Ca+ (note beam may not all be in ground state)

-
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How do we study Cosmic Ray (CR)
induced chemistry ?

1. Prepare targets for collisions — gas phase ‘easy’
- condensed/ice phase harder

Temperature

Morphology
Compound mixture of ices

All needs to be prepared in ultra high vacuum to mimic space
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Nature of Astrochemical Ices and their Environments

o Ices may be broadly characterised in terms of
- ice morphology
— energy, flux and type of processing radiation - ice processing

Ice environment

Thickness

Temperature

Processing Radiation

ol ISM grain mantle 1nm - 1um 10-100 K Stellar UV;
Lyman-a. photons (H,
luminescence); Cosmic
| rays
’1 ’/ Surfaces of planetary 1um — several 30 - 150 K | Magnetospheric ions,
/il bodies in the outer solar | km Solar UV, solar wind,
system cosmic rays
Comets (in the Oort 1m — several km 10 K Cosmic rays

cloud)
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Experimental Set-up

HV (UHV) chamber :

— P~10% - 101° mbar
— Still 1000 higher than dense

ISM !
Temperature

— Continuous flow or LHe/LN2

cryostat

e 10K < T < 450K
e Mimics ISM and star forming

regions

Samples onto a substrate
— deposited in situ by vapour

deposition
What substrate ?

ooo ooo oooO

Cryogen
input

Closed cryostat

To
pumping &
station

Au/Fe — Chromel
Thermocouple

Copper sample
moun

Sources
(Spectroscopy):
UV-VIS/ FTIR
spectrometer
Synchrotron

Temperature controller

iRy

1 Rotary feed-
_ > through

i: UV-VIS / FTIR

lon gauge

~  Resistive heater

CaF, substrate

Detectors

! _ (Spectroscopy): i

spectrometer
PMT
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How do we monitor chemical
change ?

Use spectroscopy - molecules have
spectral fingerprint
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How do we study Cosmic Ray (CR)
induced chemistry ?

How do we monitor chemical change?
Heat to desorb from surface
Temperature Programme Desorption (TPD)

Use mass spectroscopy to detect products

@)
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What ISM condition cant we
reproduce in the lab ?



What ISM condition cant we
reproduce in the lab ?

TIME I

e Processes take places over 10s 100s
or 1000s of year

e Flux is very low

e L ow dose, long exposure time
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What ISM condition cant we
reproduce in the lab ?

e QQuestion

Is flux A for irradiation time Y same as
flux B for time Z?



So lets do some chemistry !
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Irradiation of H,0:CO, ice by protons

Before irradiation

Wavenumber [cm-1]



Irradiation of H,0O:CO, ice

After irradiation for 1 hour

Wavenumber [cm-1]




Warm-up
Trradiation of
H,0:CO, ice

Wavenumber [cm-1]




Warm-up after H*

Irradiation of
H,0:CO, ice

Wavenumber [cm-1]




Warm-up after H*

Irradiation of
H,0:CO, ice
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Warm-up after H*

Irradiation of
H,0:CO, ice
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Warm-up after H*

Irradiation of
H,0:CO, ice
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Warm-up after H*

Cﬁystalline

Irradiation of H0
H,0:CO, ice

Wavenumber [cm-1]




Warm-up after H*

Irradiation of
H,0:CO, ice

Wavenumber [cm-1]




Warm-up after H*

Irradiation of
H,0:CO, ice

Wavenumber [cm-1]




Warm-up after H*

Irradiation of
H,0:CO, ice

Wavenumber [cm-1]




Example C"* Irradiation of H,0 ice

Ions: 13C* and 13C2+ (45°)
Energies: 2 and 4 keV

Sample Temperature: 30 and 90 K
Sample thickness: ~ 300 nm
Analysis: FTIR transmission (45°)

1
Fluence = —; (ions cm?)

eq
Ion beam size measured for each
ion type
Faraday cup calibrated to
determine ion current at the
sample for each ion type

Beam currents < 200 — 600 nA

Preliminary Tests:
— No ion intensity effects

beam

Collimated

oy
3

(9
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Stopping Power — C* in H,0O
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Absorbance

Results:
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Absorbance
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Temperature Dependence @

In all experiments a higher yield of CO, (and H,0O, — qualitatively) is observed at
lower temperature! This is general trend in many experiments

Ice morphology
— Plays an important role in surface chemistry (surface area, pores...)

— Density/porosity - affect stopping power and range
— Formation of dimers ??
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COz2 band area
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Role of Secondaries

e Major product of cosmic rays are more particles !

e Track modelling can explore this
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Energy degradation of electrons in H,O

Energy scale
(eV)
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Different types of interactions

5 single tracks

Neutral
dissociation

Ionisation

Pressure: 200 Excitation —> **




Role of Secondaries

Major product of cosmic rays are more particles !

e Secondary electrons are the major species

and they can induce chemistry as well as ions (but are not
themselves reactive)

indeed one CR may produce an avalanche of 10* electrons whose
energy vary from close to CR energy to thermal energy.

e
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5 keV Electron irradiation of methylammine and carbon dioxide ice makes

glycine simple amino acid

Figure 3 — Pristine CH;INH,, & CO,

Eftects of Iiradiation

Figure 4 — 100 minute after
wradiation of the misztture

mixture

o)

\/
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Forms of Glycine

« Zwittionic glycine

“A zwitterion is a
dipolar ion that is
capable of carrying
both a positive and
negative charge
simultaneously”

E.G. NH;*CH,COO

« Anionic

Negatively charged,
e.g. NH,CH;COO-

J

+

HzN

J

Zwittionic Glycine

H Anionic Glycine

) N

Stidel 8

(©
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Electron Induced Chemistry ¢

Some examples of laboratory study of electron induced synthesis of
molecules under astrochemical conditions.

Chemical synthesis in 1:1 Mixture of NH;:CO, Ice with 1 keV
electrons at 30 K
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Fig 5-1: IR spectra of NH,:CO, (1:1), (a) pre-irradiation
(b) post irradiation (58 min). Both spectra at 30 K
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Formation of ammonium carbamate U
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Fig. 5-5: IR spectra of NH; :CO, (1:1), (a) post-irradiation (58 min)
and after warm-up (220 - 270 K); and (b) comparing Frasco's actual
1964 experimental spectrum at 248 K
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Formation of ethylene glycol in pure methanol ice

Absorbance
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Fig. 6-3: Ethylene glycol was observed after irradiation

of pure CH,OH with 1 keV e at 30 K and then annealing process
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Absorbance
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Fig. 6-9: Irradiiation of 1:1 binary mixture of NH,:CH,OH
with 1 keV e at 30K
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Fig 6-14: Formation of CH,OHCO during the irradiation of binary

mixture NH3:CHSOH with 1keV e at 30K
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Formation of formamide HCONH,,
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Fig. F6-16a: Spectrum of formamide formed during annealing to 160 K

of irradiated ice of 1:1 binary mixture of NH,:CH_OH with 1 keV e at 30 K
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Fig. 6-16b: Comparison of infrared spectra of residue with formamide. Both deposits
have been anealed (to 165 K) and recooled to 20 K to produce crystaline structure

(Khanna, Lowenthal et al. 2002)
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Fig. 6-19: Formation of HCONH, during the irradiation
of 1:1 bianry mixture of NH:CH OH with 1 keV at 30K
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Electron Induced Chemistry

These are examples of high energy electrons 'Blasting’
molecules apart or release of secondary electrons !!

But at low energies electrons can do surprising things !

(©
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Electron Induced Chemistry

At low energies electrons can do surprising things !

e They can ‘stick’ to the molecule
e To form a negative ion or ‘resonance’
e But only for a very short period of time (1014 s)

e Then the electron detaches

e Leaving molecule excited or not (elastic scattering)
e But this process can also lead to the dissociation of the molecule

This is the process of Dissociative Electron Attachment (DEA)

O]

—
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Bond Selectivity using Electrons

Process of Dissociative Electron Attachment
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Electron Induced Chemistry;
Chemical Control at the Molecular Level

Dissociative electron attachment therefore provides a method for
breaking up molecules at low energies

Energies lower than the chemical bond energy !!!

Hence electrons can initiate chemistry

(O
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lon Count Rate (arb. units)

Electron Induced Chemistry; Chemical Control at the Molecular Level

CFClj

I e e I .
8 o3 T

Electron Energy (eV) —>

(9
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Selective C-Cl bond
cleavage at 0 eV

Selective C-F bond
cleavage at 3.2 eV

[llenberger et al Berlin



Nucleophilic Displacement (Sy2) Reaction

e.g.: F + CH;Cl = CH;F + CI
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Chemical surface transformations using electron
induced reactions/

DEA produces products that subsequently react on
the surface

E.g. Irradiate film of NF; and CH,Cl
Form CH,F







lon current

Relevant to most molecules in the ISM
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CH,COOH

H/CH,COOH
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H from Amine

n-Propyl amine
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Strand breaks of DNA
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Strand breaks of DNA
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Presence of anions 1n space

The number of molecular
anions detected 1n space 1s
growing with the detection of;

: g e vy e ey 2 |

A

N e e '

C,H,CH,CiH and
more recently the first nitriles
CN- ;N and CN




Anions on Titan

Negative 1on density measured by ELS at an altitude of 953 km during the Titan
(from Coates et al. (2007)).

Energy/charge (eV/q)
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100 1000
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Laboratory mimics of Titan’s
atmosphere

Use discharges to mimic the
chemistry and physical
conditions in Titan’s
atmosphere ( 5-10% CH,
and 95-90% N,)

Molecular Beam

Quadrupole HV point electrode
MS HPR 60

Corona discharge

Extraction
orifice 1)

Holder




Laboratory mimics of Titan’s
atmosphere

e The detection of CN-,
CH,CN-, C;N-,CH,CN- and C:N-
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Learning Outcomes Lecture 2

Cosmic rays induce chemistry in astrochemical/planetary ices
Laboratory experiments can replicate these conditions

CRs produce secondary species (electrons) which may in fact drive
most of the chemistry.

ALMA will provide fascinating new maps of molecular species that
will allow the routes of synthesis to be explored — Surface and CR/
Electron chemistry may be highlighted



