as in protoplanetary disks

Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Suggested literature

- A. G.G.M. Tielens, "The Physics and Chemistry of the ISM" (2007), CUP
- "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP
- "Protostars & Planets V" (2005), Part VI, eds. B. Reipurt et al., Univ. Arizona P.
- D. Semenov, "Chemistry in protoplanetary disks", Encyclopedia of Astrobiology, Springer Ver. ISBN: 978-3-642-11279-9

Outline

- Formation of molecular lines
- Molecules as disk probes
- Disk chemical structure
- Observations of molecules in disks
- Modeling disk chemical evolution with dynamics
- Predictions for ALMA

CID), DISCS

Advantages of millimeter observations

- Optically thin dust emission (outer disk)
- Rotational transitions of many molecules
- High frequency resolution: ~10⁶ (~0.05 km/s)
- Sensitive to cold regions:T~I0K
- Interferometers: sub-arsec resolution
- Many spectral lines within a bandwidth
- Day-time observations

- Plateau de Bure interferometer, Submillimeter Array, Very Large Array, CARMA, ATCA
- IRAM 30-m, Apex 12-m, Effelsberg 100-m, Aresibo 100-m, JCMT 15m, Nobeyama 45-m

I. Basics of line excitation and line analysis

Analysis of emission line data

- n,T + chemistry + excitation + kinematics + radiative transfer: line
- Excitation: radiation & collisions
- Excitation & RT: non-local problem
- 6D: 3D n,T + ID v + 2D sky plane
- Incomplete coverage of (u,v) plane
- Optically thick lines: Intensity ~ T_{exc} (¹²CO, H₂O)
- \bullet Optically thin lines: Intensity ~ τ^*T_{exc}

Courtesy: Ya. Pavlyuchenkov

Excitation temperatures: HCO⁺(I-0)

Courtesy: Ya. Pavlyuchenkov

Excitation conditions in PPDs

Rotational transition: thermally, sub-thermally, or super-thermally excited

- Molecules in disks populate dense regions: $n_H > 10^5 10^6$ cm⁻³
- Thermalized: low-lying transitions of observed molecules
- Asymmetric molecules have perplex level structure: H₂O
- High-lying transitions: LTE or non-LTE?

Pavlyuchenkov et al. (2007)

Analysis of emission line data

- LTE assumption
- \bullet T_{kin} is often fixed
- Chemistry is often ignored: fixed abundances
- Optical thin approx./LVG/escape probability

LRT tools & databases:

- 1/2/3D Line Radiative Transfer codes:
 - RADEX/RATRAN (F. van der Tak, M. Hogerheijde)
 - URANIA (Ya. Pavlyuchenkov)
 - RADLITE (K. Pontoppidan)
 - RADMC-3D (C. Dullemond)
 - LIME (C. Brich & M. Hogerheijde)
 - Photon-Dominated Region (PDR) code (F. Le Petit)
- Collisional rates: Leiden Atomic & Molecular Database: http://www.strw.leidenuniv.nl/~moldata/
- Line frequencies:
- Cologne Database for Molecular Spectroscopy: <u>http://www.astro.uni-koeln.de/cdms/</u>
- NIST, JPL, ...

I. LRT basics: Summary

- Formation of emission in molecular lines is a tricky problem
- LTE/non-LTE
- \bullet Observed molecules: T_{exc} ~ T_{kin}
- High-lying lines may reach $\tau > I$
- Complex molecules: T_{exc} =?
- LRT codes & databases (limited)
- Full modeling cycle to fit interferometric data

II. Molecules as probes

Molecules in space (~170)

			1 1		Number of Atoms						
2	3	4	5	6	7	8	9	10	11	13	
H ₂	C3	c-C ₃ H	C ₅	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N?	HC ₉ N	HC11N	
AIF	C ₂ H	I-C ₃ H	C4H	I-H2C4	CH ₂ CHCN	HCOOCH ₃	CH3CH2CN	(CH3)2CO			
AICI	C20	C ₃ N	C ₄ Si	C ₂ H ₄	CH ₃ C ₂ H	CH3COOH?	(CH3)2O	NH2CH2COOH?			
C2	C ₂ S	C30	I-C ₃ H ₂	CH ₃ CN	HC ₅ N	C ₇ H	CH3CH2OH				
CH	CH ₂	C ₃ S	c-C ₃ H ₂	CH3NC	HCOCH ₃	H ₂ C ₆	HC ₂ N				
CH ⁺	HCN	C2H2	CH ₂ CN	CH ₃ OH	NH ₂ CH ₃		C ₈ H				
CN	HCO	CH2D+?	CH4	CH ₃ SH	c-C2H4O						
co	HCO+	HCCN	HC ₃ N	HC3NH+							
CO+	HCS ⁺	HCNH ⁺	HC2NC	HC2CHO							
CP	HOC+	HNCO	HCOOH	NH ₂ CHO							
CSi	H ₂ O	HNCS	H ₂ CHN	C _s N							
HCI	H ₂ S	HOCO+	H ₂ C ₂ O								
KC1	HNC	H ₂ CO	H ₂ NCN								
NH	HNO	H ₂ CN	HNC ₃								
NO	MgCN	H ₂ CS	SiH4								
NS	MgNC	H ₃ O ⁺	H ₂ COH ⁺								
NaCl	N ₂ H ⁺	NH ₃									
OH	N ₂ O	SiC ₃									
PN	NaCN										
SO	OCS										
SO ⁺	SO ₂										
SiN	c-SiC ₂	14.5.5				I N . I				<u> </u>	
SiO	CO ₂	h	ttp://v	vww.as	strochy	mist.org	g/astroc	hymist m	ole.h	itml	
SiS	NH ₂	신상 전 공					•	-		8.5	
CS	H3+	h	++//		trouni	kooln	la/cdma	Imolocula			
HF		<u> </u>	<u>p.//w</u>	vv vv.dS			ie/cuills	molecule	3		

Note that observations suggest the presence of large PAHs and fullerenes in the interstellar gas (Tielens et al 1999, Foing & Ehrenfreund 1997).

Detected in disks: CO, HCO⁺, DCO⁺, CN, HCN, DCN, HNC, N₂H⁺,

H₂CO, CS, HDO, C₂H₂, CO₂, OH, H₂O, Ne, Fe, Si, H₂

Molecules as probes of T and n_H

Other molecular tracers

Tracer	Quantity
¹² CO, ¹³ CO	Temperature
H ₂	I
NH ₃	
CS, H_2CO	Density
CCH, HCN, CN	Photochemistry
HCO^+	Ionization
N_2H^+, H_2D^+	
C^+	
Metal ions	
Complex organics	Surface
	processes
DCO ⁺ , DCN,	Deuterium
H_2D^+	fractionation

- Large-dipole moment molecules: density
- Optically-thick lines: temperature
- lons: ionization
- Radicals: FUV/X-ray radiation
- Complex molecules: surface chemistry/ transport processes
- Isotopes: fractionation & thermal history

CO isotopologues in disks: T_{kin} (z)

Dartois et al. (2003)

Reactions in disks

Radiative association:	$H + C \Rightarrow CH + hv$
Surface reactions:	$H + O \Rightarrow OH$
Neutral-neutral:	$CH + NO \Rightarrow HCN + O$
Ion-molecule:	$H_3^+ + CO \Rightarrow H_2^- + HCO^+$
Ionization:	H + h∨, X, CRP \Rightarrow H ⁺ + e ⁻
Photodissociation:	$CH \Rightarrow C + H$
Charge exchange:	$H^+ + O \Rightarrow H + O^+$
Dissociative recombination:	$H_3O^+ + e^- \Rightarrow H_2O + H$

- ~600 species & ~6000 reactions (no isotopes)
- Only ~10-20% of accurate rates
- Uncertainty in abundances: ~0.5 dex

Gas-phase formation of complex molecules

- $C^{+} + H_{2} \implies CH_{2}^{+}$
- $CH_2^+ + H_2 \implies CH_3^+ + H$
- $CH_3^+ + H_2/O \Rightarrow CH_5^+/HCO^+ + H_2$
- $CH_5^+ + e- \Rightarrow CH_3 + H_2$
- $CH_3 + O \Rightarrow H_2CO$

 $CH_3OH_2^+ + e_- \Rightarrow CH_3OH + H$

 $CH_3^+ + H_2O \implies CH_3OH_2^+$

Gas-phase formation of complex molecules

- $C^{+} + H_{2} \implies CH_{2}^{+}$
- $CH_2^+ + H_2 \implies CH_3^+ + H$
- $CH_3^+ + H_2/O \Rightarrow CH_5^+/HCO^+ + H_2$
- $CH_5^+ + e- \Rightarrow CH_3 + H_2$
- $CH_3 + O \Rightarrow H_2CO$

 $CH_3OH_2^+ + e_- \Rightarrow CH_3OH + H$

- $CH_3^+ + H_2O \cong CH_3OH_2^+$ (too low rate, Luca et al. 2002)

Gas-phase formation of complex molecules

- $C^{+} + H_{2} \implies CH_{2}^{+}$
- $CH_2^+ + H_2 \implies CH_3^+ + H$
- $CH_3^+ + H_2^/O \Rightarrow CH_5^+/HCO^+ + H_2$
- $CH_5^+ + e- \Rightarrow CH_3 + H_2$
- $CH_3 + O \Rightarrow H_2CO$
- $CH_3^+ + H_2O \implies CH_3OH_2^+$ (too low rate, Luca et al. 2002)

Surface formation of complex molecules

- Accretion
- Surface synthesis
- Photoprocessing of ices
- Desorption: T, UV, CRPs

Surface chemistry: $O \Rightarrow OH \Rightarrow H_2O$

- $N \Rightarrow NH \Rightarrow NH_2 \Rightarrow NH_3$
- $\mathsf{C} \Rightarrow \mathsf{CH} \Rightarrow \mathsf{CH}_2 \Rightarrow \mathsf{CH}_3 \Rightarrow \mathsf{CH}_4$

 $CO \Rightarrow HCO \Rightarrow H_2CO \Rightarrow H_3CO \Rightarrow CH_3OH$

C + C, CO + OH, etc. in warm regions

III. Observations of molecules in PPDs

- IR (space) spectroscopy:
 - inner regions: <20 AU
 - rotational/vibrational lines
 - absorption/emission
 - Boltzmann diagrams, LTE, T_{kin}
- (Sub-)millimeter observations:
 - outer regions: >50–100 AU
 - rotational/vibrational lines
 - emission lines
 - antennas: no spatial information, surveys
 - interferometers: resolved structures, restricted disk sample

Observational findings: outer disks

- Gas: depletion of molecules
- Ices: H₂O, NH₃, CH₄, H₂CO, CH₃OH
- Vertical gradients of T
- Photo-dominated chemistry
- Cold CO, CCH, HCN
- "Dry" interiors: where is water?
- Keplerian rotation
- Non-thermal line broadening

Bergin et al. (2007), Dutrey et al. (2007), Semenov et al. (2010)

IR revolution: molecules in planet-forming zones

- NeII, FeII, OI, H₂, OH, H₂O, CO₂, HCN and C₂H₂
- Warm gas: $T \gtrsim 100 5000 \text{ K}$
- No depletion
- Non-Keplerian profiles: disk wind?
- Herbig Ae disks appears to be deficient in H₂O and organics

(Lahuis ++ 06, Pascucci ++ 07-11, Salyk ++ 08-11, Pontoppidan ++ 07-11, Carr & Najita 08, Kamp++11)

Kinematics: weighting stars

Simon et al. (2000)

Chemistry in T Tau and Herbig Ae disks

- Large programs: "Chemistry in Disks" (CID), Europe
- CID strategy: observations + modeling
- "Disk Imaging Survey of Chemistry with SMA" (DISCS), USA
- DISCS strategy: observations
- Limited sample: large, face-on disks (~6)
- Lines are weak: ~0.3–3K (0.1–1Jy)
- I line: ~I–I0 hours
- Herbig Ae: CO, HCO⁺, CN, HCN
- T Tau: CO, HCO⁺, HCN, N₂H⁺, CCH, CS, H₂CO, DCO⁺, DCN

Dutrey et al. (2007), Schreyer et al. (2008), Henning et al.(2010), Öberg et al. (2010-11)

Resolved surface density & T: DM Tau

Pietu et al. (2007)

Temperature in T Tau and Herbig Ae disks

Pietu et al. (2007)

Ionization: HCO^+ and N_2H^+

- LkCa15 (K5), DM Tau (M1) and MWC480 (A4)
- J=I-0, 2-I
- Two 5 σ detections: N_2H^+ in LkCa15 & DM Tau
- Upper limit: MWC480

Dutrey et al. (2007)

Ionization: HCO^+ and N_2H^+

qualitative agreement

X-ray-driven chemistry in uses.

- DM Tau (MI), LkCa 15 (K5), MWC 480 (A4)
- CCH (I-0) & (2-I)
- Hard to photodissociate
- Chemistry is known

 \bigcup

48.^s5

0

48.°0

X-ray-driven chemistry in disks

- T_{exc}: ~6 K
- Large-scale mixing or sub-thermal excitation?
- Less CCH in MWC 480
- Strong photodissociation by the Herbig Ae star?
- Low L_X in MWC 480: less efficient ion-molecule chemistry?

Chemistry in T Tau and Herbig Ae disks

Molecule	χ^2 -r	ninimiz	ation method	Cher	mical model	DM Tau	
	Ν	1σ	N/N(¹³ CO) ⁽¹	^(*) N	N/N(¹³ CO) ^(2*)	N/N(¹³ CO) ^(1*)	
	$[cm^{-2}]$	error		$[cm^{-2}]$			
H_2	610^{22}	110^{22}	1.510^{6}	510^{22}	1.310^{6}	110^{7}	
$^{13}CO^{(*3)}$	410^{16}	510^{15}	1	410^{16}	1	1	
HCO^+	610^{12}	310^{11}	1.510^{-4}	1.510^{13}	410^{-4}	210^{-3}	
HCN	510^{11}	310^{11}	1.310^{-5}	410^{11}	10^{-5}	710^{-4}	
CS	310^{12}	310^{12}	$< 810^{-5}$	210^{11}	510^{-6}	310^{-4}	
C_2H	210^{13}	210^{13}	$< 510^{-4}$	10^{10}	2.510^{-7}	10^{-3}	
CH_3OH	0	710^{15}	$< 210^{-1}$	0	0	0	

- AB Aur: less amount of complex molecules per CO
- Are Herbig Ae disks "deserts" for complex molecules?
- •No CO freeze-out in Herbig Ae disks: no surface chemistry
- Lower L_X: less efficient ion-molecule chemistry
- CO + He⁺ \Rightarrow C⁺ + O + He⁺

Schreyer et al. (2009), Öberg et al. (2010-11)

Turbulence in disks

- Temperature from CO lines
- Keplerian velocity: M*, r
- Subsonic components: ~0.1–0.4 km/s
- Comparable with MHD models

Dutrey et al. (2007), Hughes et al. (2011)

III. Observations of molecules in PPDs: Summary

- Probes of disk structure
- Analysis techniques are available
- Vertical gradients of T
- CO freeze-out in "cold" T Tauri disks
- "Warm" Herbig Ae disks are less rich in molecules
- High-energy stellar radiation
- Models are in "qualitative" agreement
- Turbulent line broadening
- Rich inner disk chemistry

IV. Disk chemical structure from modeler's perspective

Zone of ions and radicals (atmosphere)

- Intense UV and X-rays
- Low densities
- High temperatures
- High ionization degree
- Limited gas-phase chemistry

Zone of molecules (intermediate layer)

- Partly shielded from UV and X-rays
- Moderate densities
- Moderate temperatures
- Oasis of rich chemistry: gas-surface cycling, photoprocessing of ices
- Most molecular lines are excited here

Zone of ices (midplane)

- Only cosmic rays can penetrate
- High densities
- Low temperatures
- Molecules are frozen out
- Rich chemistry on dust surfaces

Inner, planet-forming zone

- High n,T
- Reactions with barriers
- 3-body collisions
- X-ray-driven processes
- No freeze-out
- Fast grain evolution

A scheme of disk structure

- Wide range of T & n_H
- FUV, X-rays, cosmic rays
- Dynamical evolution
- Photoevaporation
- Grain evolution
- No equilibrium

IV. Disk chemical structure from modeler's perspective: Summary

- "Sandwich"-like chemical structure
- Cold midplane: freeze-out, thick ices, surface chemistry
- Hot atmosphere: dissociation/ionization, ions/radicals, gas-phase chemistry
- Warm molecular layer: oasis of molecules, UV-assisted gas-phase & gas-grain chemistry
- Dense planet-forming zone: endothermic neutral-neutral chemistry, X-rayassisted ion-molecule chemistry

V. Modeling disk chemistry

Chemical kinetics equations

$$\frac{\partial n_i}{\partial t} = \sum_{j,k \neq i} k_{jk} n_j n_k - n_i \sum_l k_l n_l + \nabla D n_{\rm H} \nabla n_i / n_{\rm H} - \nabla U n_i$$

Evolution = Formation - Destruction + Diffusion + Advection [Chemistry] [Dynamics]

- Physical conditions
- Initial abundances of molecules
- Grain properties
- Reaction data
- Chemical code

Timescales in disks: chemistry vs dynamics

Characteristic Timescales: Outer Disk (250 AU)

	Processes	Midplane [yr]	Warm layer* [yr]	Atmosphere* [yr]
	Mixing Gas-phase UV Accretion Desorption Surface	1.0 (6) 2.0 (-2) >1.0 (7) 2.7 (1) 1.0 (6) >1.0 (7)	$2.5 (5) \\ 1.8 (-1) \\ 1.2 (6) \\ 1.8 (2) \\ 4.3 (0) \\ >1.0 (7)$	1.4 (5) 2.9 (0) 3.1 (1) 2.3 (3) <1.0 (-7) 1.4 (5)
Sementov & Wiebe (201		CO	······	1.+ (3)

Chemistry with dynamics

- Turbulence & accretion
- Isotopic homogeneity of the Solar Nebula
- Crystalline silicates in comets and outer disk regions
- Extended gas-grain chemistry
- ID/2D turbulent mixing
- "ALCHEMIC" code
- "Qualification" fit to observations
- Reduced and oxidized ices in comets

Semenov & Wiebe (2011)

Turbulence: Steadfast species

- Fast gas-phase formation and destruction
- t: Gas-phase chemistry < Dynamics
- Example: CO, OH, H_2O ice, CCH, C⁺, CN, HCN

Turbulence: Sensitive species

- Slow surface formation & desorption
- t: Surface chemistry > Dynamics
- Hydrocarbons (C_2H_2), organics (HCOOH), SO, SO₂, C_2S , C_3S

VI. The Brave New World: ALMA

- Atacama Large Millimeter Array (2013)
- $50 \times 12m + 12x7m + 4x12m$
- Spatial resolution: 0.005"
- Spectral resolution: <0.05 km/s
- 8 GHz bandwidth for continuum
- 86 950 GHz (250 µm 1 mm)
- x100 resolution
- x20 sensitivity

ALMA imaging of gas in PPDs:

- "Hot core/corinos"-like complex molecules: >CH₃OH, C_nH_m
- Molecules with S, P, Si, Cl, ...
- Anions: C₈H⁻
- Isotopologues: ¹⁵N, ³⁴S, ^{17,18}O, D, ¹³C
- Ionization structure
- Planet-forming inner regions
- Molecular layers
- Large- and small-scale dynamics
- Large surveys
- Unknown unknowns!

ALMA is working:TW Hya

CO (3-2): Rotation

HCO⁺ (4-3): Rotation

Science Verification observations of TW Hya at 345 GHz

ALMA is working: HD 100546

CO (3-2): Rotation

ALMA commissioning

Disk models for ALMA: HCO⁺ (4-3)

Channel maps of HCO⁺ (4-3)@ 20°

"UNIFORM"

"THERMAL"

"CHEMICAL"

Face-on disks: no big difference

Channel maps of HCO⁺ (4-3)@ 60°

"UNIFORM"

"THERMAL"

"CHEMICAL"

Edge-on disks: molecular layers & T-gradients become visible

Chemical vs. Temperature Gradients: 0.68 km/s channel of HCO+ (4-3)@ 60°

ALMA simulations

Reconstructed images

Semenov et al. (2008)

Ideal image

ALMA simulations (other transitions, disk sizes, and inclinations)

2.		Bandwidth (kHz)	$R_{\rm disk} =$	800 AU	$R_{\rm disk} = 250 \ { m AU}$		
Species	Frequency (GHz)		$i = 20^{\circ}$	$i = 60^{\circ}$	$i = 20^{\circ}$	$i = 60^{\circ}$	
HCO ⁺ (1–0)	89	30	Zoom-c (4 hr) ^a	Zoom-c (10 hr)	Zoom-a/b (>12 hr)	Zoom-a/b (>12 hr)	
C ¹⁸ O(2-1)	220	75	Zoom-d (1 hr)	Zoom-c (<0.5 hr)	Zoom-c (4 hr)	Zoom-c (10 hr)	
¹³ CO(2–1)	220	75	Zoom-d (<0.5 hr)	Zoom-d (<0.5 hr)	Zoom-c (2 hr)	Zoom-c (3.5 hr) ^a	
CS(5-4)	245	80	Zoom-e (3 hr)	Zoom-d (12 hr)	Zoom-b (>12 hr)	Zoom-b (>12 hr)	
HCN(3-2)	266	90	Zoom-e (<0.5 hr)	Zoom-d (1 hr)	Zoom-c (4 hr)	Zoom-b (>12 hr)	
HCO ⁺ (4–3)	357	120	Zoom-d (<0.5 hr)	Zoom-e (<0.5 hr)	Zoom-c (2 hr)	Zoom-c (3 hr)	
HCO ⁺ (7–6)	624	210	Zoom-e (<0.5 hr)	Zoom-e (1.5 hr)	Zoom-c (12 hr)	Zoom-d (>12 hr)	
¹³ CO(6–5)	661	220	Zoom-e (<0.5 hr)	Zoom-e (1 hr)	Zoom-d (1 hr)	Zoom-c (6 hr)	

Thermal gradients and chemical stratification in disks will become observable