ust in protoplanetary disks

Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

http://www.alma.inaf.it/attachments/article/118/Lecture12-Semenov.pdf

Suggested literature

- A. G.G.M. Tielens, "The Physics and Chemistry of the ISM" (2007), CUP
- B. Draine, "Astrophysics of Dust n Cold Clouds" (2003), astro-ph/0304488
- "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP
- "Protostars & Planets V" (2005), Part VI, eds. B. Reipurt et al., Univ. Arizona P.
- N.V. Voshchinnikov, "Optics of Cosmic Dust I/II" (>2004), CUP

Outline

- The role of dust
- Light interaction with grains
- Structure & evolution of protoplanetary disks (PPDs)
- Evolution of dust in PPDs
- Observations of dust in PPDs
- ALMA observations

The role of dust in star-formation

- Dust: ~25Å–1cm
- Widespread, 1% by mass (ISM)
- Opaqueness of matter
- Heating & cooling
- Sink of heavy elements (>Na)
- Provides surface for catalytic reactions & adsorption

I. Light interaction with grains

Basics definitions

- Extinction = absorption + scattering: $Q_{ext} = Q_{abs} + Q_{sca}$
- Cross-section for grain of radius "a": $C_{\text{ext}} = \pi a^2 Q_{\text{ext}}$
- Size parameter for a wavelength " λ ": $x = \frac{2\pi a}{\lambda}$
- Complex refractive index: m = n ik
- Single-scattering albedo: $\omega = 1 Q_{
 m sca}/Q_{
 m ext}$
- Phase function: $p(\theta)$
- Polarization: full Stokes vector (I,Q,U,V)
- Different theories for various combinations of x and m
- Measured refractive indices are needed

Distinct regimes of light scattering

- Small dielectric grains (Rayleigh limit): $x \to 0$, $|mx| \to 0$ $Q_{\rm abs} \propto a, Q_{\rm sca} \propto a^4, p(\theta) = 3/4(1 + \cos^2 \theta)$
- Huge grains (geometric optics): $x o \infty, 2x|m-1| o \infty$

 $Q_{\text{ext}} = 2,$ $4kx \gg 1 : Q_{\text{abs}} = 2,$ $4kx \ll 1 : Q_{\text{abs}} \sim a$

forward scattering

- Intermediate case: need exact theory
 - Mie theory for homogeneous spheres (Mie 1908)
 - Multilayered spheres (Voshchinnikov et al. 2004)
 - Infinite/finite cylinders (Bohren & Huffman 1983)
 - Spheroidal particles (Asano 1979)

- Discrete Dipole Approximation for arbitrary 3D particles (Purcell & Pennypacker 1973)

Light interaction with grains: examples

21

I. Light interaction with grains: Summary

- Opacities
- Thermal balance
- Dust emissivity slope varies at >100 μ m
- Sizes, topology, porosity, conducting materials
- Tools & databases of optical constants & properties

II. Structure and evolution of protoplanetary disks

Young Stellar Disks in Infrared

HST • NICMOS

Life cycle of dust in Galaxy

- Nucleation and initial growth in AGB shells
- Mixing & growth in the ISM
- Collapse of a dense cloud
- Rotating accretion disk
- Gas and dust "dispersal"
- Formation of planetary system
- A new AGB star at the end

Disk structure & evolution

- Conservation & redistribution of angular momentum
- Gas viscosity
- Gravity
- Equation of state
- Initial mass
- Initial angular speed of a cloud
- Characteristics: R_{disk}, M_{disk}, T_{dust}, T_{gas}, surface density, accretion rate, ...

Disk vertical structure

• Equation of state:
$$P=c_{
m s}^2
ho$$

• Hydrostatic equilibrium:
$$rac{dP}{dz}=
ho\Omega_{\mathrm{K}}^{2}z$$

• Assuming isothermal structure in z-direction:

• Density profile:
$$ho=
ho_0\exp(-rac{z^2}{H^2})$$

- Disk pressure scale height: $H=\sqrt{2}c_{\rm s}\Omega_{\rm K}^{-1}$
- *H* ~0–5

Disk shape

- Assume power-law model for temperature: $T \propto r^{-q}, c_{
 m s} \propto r^{-q/2}$
- Keplerian rotation: $\Omega_{\rm K} = \sqrt{G M_*/r^3} \propto r^{-3/2}$
- Aspect ratio: $H/r = \sqrt{2}c_{\rm s}/r\Omega_K \propto r^{(1-q)/2}$
- Flaring disks when (1-q)/2>0, q<1
- A typical disk with q=1/2: $H/r \propto r^{1/4}$

Disk radial structure

- Anomalous viscosity (Shakura & Sunyaev 1973): $u = lpha c_{
 m s} H$
- $\alpha \sim 0.01$ (MHD turbulence), ~ 1 (gravitational instability)
- Conservation & redistribution of angular momentum
- Vertically-integrated quantities
- Classical model of ID viscous evolution (Pringle 1981, Linden-Bell & Pringle) 1974, Shakura-Sunyaev 1973):

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} \left(\nu \Sigma R^{1/2} \right) \right]$$

- "Early" disk: $\Sigma(r) \propto r^{-1}$ "Late" disk: $\Sigma(r) \propto r^{-3/2}$

Evolution of disk: ID

Surface density: Power-law with tapered edge

Pringle (1981)

Evolution of disk: 2D

- Supersonic to subsonic transition (black line)
- Accretion flow (arrows)
- Shock passage: destruction of molecules and grains
- Accretion heating
- Initial disk is decreting disk
- Rapid phase: ~0.1-0.5 Myr

Evolution of a star and a disk

Hueso & Guillot (2005)

Mass accretion rate vs Age

- Mass accretion ceases with time: $t_{end} \sim 10-30$ Myr
- Mass accretion rate at given age depends on initial angular momentum

Ciesla & Dullemond (2010)

Detailed disk models

- I+I/2D passive models (D'Alessio et al. 1998, Dullemond & Dominik 2004):
- Radiation of a central star
- Radiative transfer:
 - plane-parallel/2D,
 - frequency-averaged (grey),
 - frequency-dependent
- Heating & cooling of gas
- Hydrostatic equilibrium
- 3D MHD models (e.g., Flock et al. 2011):
- ~10–100 orbital periods
- Isothermal or simple power-law for T
- Local disk patches
- Realistic turbulence

Passive steady-state disk: 2D

Flaring disks, T_{gas}>T_{dust} in atmosphere

Kamp et al. 2005; Jonkheid et al. 2004; Nomura & Millar 2005; Woitke et al. 2009

Real disks: 3D!

- Gravitational instabilities
- Interaction with a nearby star
- Planet-disk interactions
- Large-scale turbulent waves

Photoevaporation of disks

- UV/X-ray radiation from the star: I-I0 AU
- Superheated atmosphere gas flows away
- T Tauri star: M_{evap} ~10⁻⁹-10⁻⁸ M_{Sun}/year
- Clearing of inner regions

Gorti et al. (2009)

II. Structure and evolution of PPDs: Summary

- Outcome of cloud collapse: ~ 0.1–0.5 Myr
- Anomalous viscosity (turbulence)
- $\bullet\ M_{acc}$ ceases with time
- $\bullet\ M_{acc}$ depends on initial angular momentum
- "Early" disks: accretion heating
- "Late" disks: passively reprocess L*
- 3D structure
- $\Sigma(r, t)$ can depart from a power law
- Photoevaporation

III. Dust evolution in PPDs

Dust evolution in disks: ~I-I0 Myr

Williams & Cieza (2011)

Dust evolution in a nutshell

- <10 cm/s collisions due to Brownian motion
- Sticking
- > | µm– | cm grains sediment
- Rain drops-like growth regime
- Fragmentation (V>10–100m/s)
- Erosion
- Turbulence returns small grains upward
- Inward drift
- Mostly proved by experiments

Fragmentation

Weidenschilling et al. (1993), Blum (2010)

How to pass a Im-barrier?

- Big grains \Rightarrow 100% Keplerian rotation
- Radial pressure gradient ⇒ gas orbits at
 99% Keplerian velocity
- Head wind: inward drift
- Im particle: ~10⁴ years from 100 AU
- Vertical settling: ~I Myr @ I AU for I μm
- Vertical stirring: ~10⁴ years @ 100 AU
- Coagulation: ~0.1–2 Myr

Possible mechanisms:

- Gravitational instabilities
- Aerodynamic collection of eroded debris
- Restructuring of fluffy aggregates
- Rapid grain growth in pressure bumps

A plausible growth mechanism >1m

- Corotating patch in midplane
- Weak MHD turbulence
- Density fluctuations
- ~Im-sized "bricks" concentrate in pressure bumps
- Self-gravitation bounds clumps >10 orbital periods
- Local gravitational instabilities
- Mass concentrations $\sim 10^{-4} M_{Earth}$

Brauer et al. (2008), Johansen et al. (2011)

III. Dust evolution in PPDs: Summary

- Dust growth ~0.1–2 Myr
- Coagulation, sedimentation, fragmentation, stirring, inward drift
- Inward drift: ~10³–10⁴ years for 1m-particles @ 100 AU
- Im-barrier for growth
- Self-gravitation & growth in pressure maxima

IV. Dust in protoplanetary disks and the early Solar nebula

Observational techniques

- IR features
- Spectral Energy Distribution (SED)
- Emission at mm–cm wavelengths
- Resolved IR-mm images
- Surveys of PPDs of various ages
- Composition of meteorites
- Composition of cometary/IDP grains
- Isotopic dating
- Condensation sequence

Spectral Energy Distribution

Dullemond et al. (2007)

SEDs: Signatures of dust evolution

Dullemond et al. (2007)

Face-on PPDs: "warm" dust in emission

Edge-on PPDs: "cold" dust in absorption

Terada et al. (2007)

IR dust features:

- Vibrational bands (stretching, bending): 3–100µm
- Water ice: 3µm
- PAHs: 3.3, 6.2, 7.7-7.9, 8.6, 11.3 and 12.7µm, etc.
- (Nano)diamonds: 3.43, 3.53µm
- (ISM) Hydrogenated amorphous carbon: 3.4, 6.8, 7.2µm
- Amorphous silicates: 9.8, 18µm
- Crystalline silicates: 10.2, 11.4, 16.5, 19.8, 23.8, 27.9, 33.7, 69µm
- Iron sulfides: ~23µm
- Featureless: Fe, FeO, organics, ...
- Crystalline silicates requires radial transport

Natta et al. (2006), van den Acker et al. (2004)

Disk masses vs Age

Mdisk vs Mstar: no correlation

Large grains in inner PPDs

- Silicate band' profiles: up to ~3µm grains
- IR SEDs: small dust gaps
- ~10% of I-3 Myr disks
- Increase with age
- Resolved inner dust holes
- Gas is still around, accretion still goes on

Williams & Cieza (2011)

Large grains in outer PPDs

Testi et al. (2003), Natta et al. (2004), Rodmann et al. (2005), Guilloteau et al. (2011)

Grain evolution in the Solar Nebula

Grain evolution in the Solar Nebula

- Most primitive are chondritic meteorites: matrix + chondrules + CAIs
- No signs of alteration & metamorphism (T<50 K)
- Calcium-Aluminum-rich Inclusions (CAIs), 4.571 Gyr:
 - 0.1mm–1cm: mixture of highest-T condensates
 - Multiple high-T events
- Chondrules (molten droplets): ~0–2 Myr after CAIs
 - Single melting-condensation event
 - Peak temperatures: >1800K
 - Initial cooling: ~hours (till ~1000K)
 - Chondrule densities: >10⁻⁵ cm⁻³
 - Formation in "clumps": >1000 km

Courtesy of S. Desch

Presolar grains in meteorites

- Survived shock passage & heating in the early Solar Nebula
- What happened to ices & gas?

Gail & Hoppe (2010)

Dust composition

- Water & CO₂ ices (40%)
- Volatile & refractory organics (30%): "CHON"
- Iron-poor amorphous & crystalline silicates (27%)
- Troilite FeS (~2%)
- High-T condensates: Fe, SiC, TiO, Al₂O₃ (<1%)

Component	Elements	Condensation temperature*
Refractory	Al-, Ca-, Ti-oxides, trace (Zr, V, Wo, etc.)	1850–1400 K
Main	Mg-rich silicates, metallic Fe, Ni, Co, Li, Cr	1350–1250 K
Volatile	Sulfides, silicates, metals (Mn, P, Na, Rb, K, F, Zn, Au, Cu, Ag, etc.)	1250–640 K
Highly volatile	C, H, O, N, Cl, Ne, Ar, Xe, Kr, etc.	< 640 K

* Condensation temperatures are given for the pressure of 10^{-4} bar.

Pollack et al. (1994), Semenov et al. (2010)

IV. Dust in PPDs & Solar Nebula: Summary

- Disk masses evolve
- M_{disk} : no correlation with M_* , L_*
- Grain sizes evolve
- Gaps & inner holes
- Crystalline silicates in outer disks: transport or shocks?
- Mineralogical composition of meteorites
- ~2 Myr formation of solids in the early Solar System
- Presolar materials in meteorites

VI. The Brave New World: ALMA

- Atacama Large Millimeter Array (2013)
- $50 \times 12m + 12x7m + 4x12m$
- Spatial resolution: 0.005"
- Spectral resolution: <0.05 km/s
- 8 GHz bandwidth for continuum
- 86 950 GHz (250 µm 1 mm)
- x100 resolution
- x20 sensitivity

ALMA imaging of dust in PPDs:

- Dust emissivities: 90GHz–ITHz
- Observed fluxes at 1.3mm: 30–1000mJy => 1h to get 0.03mJy @ 0.05"
- Large sample of PPDs: >100
- "Debris" disks
- Spatially resolved images: >0.01"@ITHz (~I AU @ 100 pc)
- Radial gradients of grain sizes
- Total M_{disk}
- Transient, small-scale features
- Gaps & inner holes
- Polarization

ALMA imaging of dust in "debris" disks:

Science Verification observations of β Pictoris at 345 GHz

ALMA imaging of dust in PPDs:

