Introduction to (mm)radioastronomy Bologna, June 13, 2011 Roberto Neri, IRAM

- historical overview
- > from free-space to science
- > a few words on calibration

or a couple of things you might want to know!

> H.Hertz (1888)

- Hertz oscillator : first radio wave transmitter
- existence of electromagnetic waves
- confirms Maxwell's theory

> G.Marconi (1901)

- first transatlantic radio communication @ 820 KHz

> K.Jansky (1932)

- azimuth rotating antenna @20.5 MHz
- discovery of cosmic radio emission (GC)
- $1 Jy = 10^{-26} W.m^{-2}.Hz^{-1}$

- > K.Jansky (1932)
 - azimuth rotating antenna @20.5 MHz
 - discovery of cosmic radio emission (GC)
 - $1 Jy = 10^{-26} W.m^{-2}.Hz^{-1}$

> G.Reber (1938)

- first parabolic radio dish @ 160 MHz (=1.8 m)
- confirms Jansky's discovery
- first synchrotron survey

> G.Reber (1944, ApJ, 100, 279)

> G.Reber (1944, ApJ, 100, 279)

- first parabolic radio dish @ 160 MHz (=1.8 m)
- confirms Jansky's discovery
- first synchrotron survey no detection @ 900 and 3300 MHz

> A.Penzias and R.Wilson (1965, ApJ, 142, 419)

- discovery of the CMB @ 41 GHz

- HI@21 cm : Ewen & Purcell 1951 ; Oort & Muller 1951
- > OH @18 cm: Weinreb et al. 1963
- > 1^{st} polyatomic molecule in 1968: NH3 (Cheung et al.)
- > H2O @ 1 cm (22 GHz) : Cheung et al. 1969
- > start of UV astronomy: H2 in 1970
- ≻ 1970: *CO*
- many more molecules, more and more complex (e.g. C2H5COOH) and more and more long (13 atoms ?)

Historical Overview : detected molecules

Historical Overview : some (sub)mm-Telescopes

- > 1964: Haystack 37-m tel. (up to to λ =10/6mm)
- > 1965: Green Bank 140ft telescope (∧>6mm)
- > 1969: Kitt Peak 36'/12m telescope (1>2/1mm)
- > 1970: Effelsberg 100m telescope (1>3mm)
- ➢ 1982: Nobeyama 45m telescope (∧>2mm)
- ▷ 1984: IRAM 30m telescope (∧>0.8mm)
- > 1988: CSO 10.4m telescope (ג>0.3mm)
- > 1990: Plateau de Bure Interferometer (∧>0.8mm)
- > 2000: GBT 105m telescope (∧>3mm)
- > 2004: APEX (∧>0.3mm)
- > 2012: ALMA (ג>0.1mm)

IRAM Science

Science Drivers 2005 >	Allocated Time	Keyword
Galaxies @ high-z : LBG, SMM, ERO, RG	30%	"CSF history"
Nearby Galaxies : Spirals, (U)LIRGs	30%	"dynamics + structure"
YSO : Prestellar Clouds → T-Tauri Stars	30%	"SF + evolution"
Evolved Stars	5%	"mass loss"
Chemistry, Solar System,	5%	

VLBI 10 days	
--------------	--

mm-astronomy ...

... not anymore in a proof-of-concept stage ... belongs to mainstream science

 \succ has a refractive index : n' = n - $i\kappa$

 $\succ \kappa$ = absorbs/emits electromagnetic radiation = extinction

> n = path delay = seeing

- > water vapor poorly mixes with dry air > eddies
- > eddies = atmosphere is turbulent > fluctuating path delay
- > time varying deformation of wavefront > phase fluctuations

- > extinction = degradation of source amplitude
- > phase noise = degradation of spatial resolution
 - > SD: anomalous refraction
 - > Interferometers: phase decorrelation

> main contributors to the atmospheric refraction: H_2O , O_2 , O_3 > scale heights: $H_2O = 2 \text{ km}$, $O_2 = 8 \text{ km}$, $O_3 = 20 \text{ km}$

Telescope	Altitude	Frequencies
EFFELSBERG 100m	320	<90 GHz
SRT 64m	700	<120 GHz
SMA 8	4030	<700 GHz
ALMA 50	5000	<1000 GHz

Telescopes

- > prime-focus (Effelsberg)
- Cassegrain (GBT)
- Gregorian (SRT)
- > Nasmyth (IRAM 30m)

Array, Single-Dish

D = diameter

- F = focal length
- M = magnification
- η_{A} = aperture efficiency

The perfect Single-Dish

From a perfect to a real single-dish

- > optical alignment is never perfect
- > surface irregularities introduce error lobes
- illumination is tapered (-10 ... -15dB)
- real beam = main beam + error lobes + sidelobes

From a perfect to a real single-dish

- > optical alignment is never perfect
- surface irregularities introduce error lobes
- illumination is tapered (-10 ... -15dB)
- real beam = main beam + error lobes
- main beam = $1.16 \lambda/D$ [rad] -13dB
 (FWHM) = $2.4 \, 10^5 \lambda/D$ ["]
- \succ main beam solid angle $= 1.13 \, \theta_{
 m mb}^2$ [sterrad]

From a perfect to a real single-dish

- > optical alignment is never perfect
- surface irregularities introduce error lobes
- illumination is tapered (-10 ... -15dB)
- real beam = main beam + error lobes
- main beam = $1.16 \lambda/D$ [rad] -13dB
 (FWHM) = $2.4 \, 10^5 \lambda/D$ ["]
- \succ main beam solid angle $= 1.13 \, \theta_{
 m mb}^2$ [sterrad]
- > aperture efficiency

 $\eta_A = \eta_{\text{Blocage}} \cdot \eta_{\text{Spillover}} \cdot \eta_{\text{Receiver}} \cdot \eta_{\text{Ruze}}$

= 0.7 (ALMA B7) ... 0.8 (ALMA B3)

Single-Dish limitations

1. angular resolution : ~1/D

Need to

- 1. increase diameter
- 2. increase the pointing accuracy
- 3. keep a high surface quality

Single-Dish	Angular resolution @ 1mm	
CSO 10m	24"	
IRAM 30m	9"	
LMT 50m	6"	
TOMORROW: the power of interferometers		

Array = Single-Dish

> is an efficient mixer-based photon converter

- > performs a heterodyne down-conversion
- > amplifies incoming signal with minimum extra noise

> is an efficient mixer-based photon converter

- > performs a heterodyne down-conversion
- > amplifies incoming signal with minimum extra noise

- > is an efficient mixer-based photon converter
- > performs a heterodyne down-conversion
- > amplifies incoming signal with minimum extra noise

 $(\cos \omega_{\rm L} t + \epsilon \cos \omega_{\rm RF} t)^2 \quad \blacksquare \implies \epsilon \cos \omega_{\rm L} t \cos \omega_{\rm RF} t = \frac{1}{2} \epsilon \cos(\omega_{\rm L} - \omega_{\rm RF}) t$

- > is an efficient mixer-based photon converter
- > performs a heterodyne down-conversion
- > amplifies incoming signal with minimum extra noise

 $(\cos \omega_{\rm L} t + \epsilon \cos \omega_{\rm RF} t)^2 \quad \blacksquare \implies \epsilon \cos \omega_{\rm L} t \cos \omega_{\rm RF} t = \frac{1}{2} \epsilon \cos(\omega_{\rm L} - \omega_{\rm RF}) t$

 $(\cos \omega_{\rm L} t + \epsilon \cos \omega_{\rm RF} t)^2 \quad \blacksquare \implies \quad \epsilon \cos \omega_{\rm L} t \cos \omega_{\rm RF} t = \frac{1}{2} \epsilon \cos(\omega_{\rm L} - \omega_{\rm RF}) t$

- > is (ideally) a (lossless) bandpass filter
- > output voltage is proportional to its input (noise) power

- ➢ is (ideally) a (lossless) bandpass filter
- > output voltage is proportional to its input (noise) power

PdBI Receiver Capabilities

Item	Value	Notes
RF bands		
	19 - 26	Atmospheric phase correction
1 = ALMA Band 3	80 - 117	SSB
2 = ALMA Band 4	129 - 174	SSB
3 = ALMA Band 6	200 - 269	SSB
4 = ALMA Band 7	277 - 371	25B
RF response	SSB	LSB or USB Image Gain >-10dB
IF band	4 - 8 GHz	
Polarization	Dual linear	Circular also possible
Observing mode	Single frequency Dual polarization	Second band in standby Potential for Dual freq, Dual pol

After very first attempts in the early 90's a second generation of multibeam instruments have successfully been commissioned since 2000:

BEARS	3mm at Nobeyama 45m (25 beams)
SEQUOIA	3mm at FCRAO 14m (LMT) (32 beams)
CHAMP(+)	0.7/0.45mm at CSO/APEX (16/14 beams)
HERA	1.3mm at IRAM 30m (18 beams)
HARP	0.8mm at JCMT (16 beams)

These instruments are largely based on assembled single pixel technology.

HERA Pol 2

230 GHz Continuum on URANUS

Error beams come up at the 3% or -17dB level (cons with moon scans).

Next generation multibeam receiver systems @ IRAM

- Sensitivity x 2 + pixel x 5 + IF BW x 4 (8)
 - = receiver with 50-100 high performance pixels

(> to 20 times faster mapping)

- That's about the difference between TMC-1 and TMC.
- Will allow to study the role of galactic low column density CO
- Is about the step required to map samples of nearby galaxies in ¹³CO and HCN, HCO+.
- For adventurers this will also be the threshold where large high-z fields become interesting, provided there is enough bandwidth per pixel.
- •To make this come true we need new and more integrated technology !

Transport from the antenna

Backend

<image>

> very different backend architectures

× LO ×

amplitude

amplitude + phase

Computer

- > a signal averaging or integrating device that smoothes out the rapidly fluctuating detector output
- > control of the instruments, telescope
- ➤ calibration
- > science output

Calibration : definition of temperatures

- > antenna temperature
- > system temperature
- brightness temperature
- \succ etc.

Calibration : antenna system temperature

The output power of a ...

Calibration : back to definitions

Calibration : back to definitions

> a bit more complicated

$$F_{\text{eff}} = F_{\text{sky}} + F_{\text{spill}} + F_{\text{optics}} + \dots$$

Calibration : antenna system temperature

antenna system temperature is the temperature of the equivalent blackbody observed by the antenna

Single-Dish (only!)

The difference in the two outputs gives the contribution from the source alone

Calibration : system and antenna temperature

We refer the system temperature

to an ideal antenna located outside the atmosphere.

Calibration : brightness temperature and RJ-approximation

black-body radiation at temperature T

Calibration : brightness temperature and RJ-approximation

black-body radiation at temperature T

> Rayleigh-Jeans approximation $h\nu << kT$

GM Aur (Calvet et al. 2005, Hughes et al. 2009)

Source brightness and brightness temperature

 $I_{\nu}(\Omega) = B_{\nu}(T_{\rm B}, \Omega)$ [W m⁻² Hz⁻¹ sr⁻¹]

Source brightness and radiation temperature

 $I_{\nu}(\Omega) = 2k/\lambda^2 T_{\rm R}(\Omega)$ [W m⁻² Hz⁻¹ sr⁻¹]

Flux density and source brightness

 $S_{\nu} = \int B_{\nu}(T,\Omega) d\Omega$

 $[W m^{-2} Hz^{-1}] \equiv [10^{26} Jy]$

Calibration : system and antenna temperature

We refer the system temperature

and the antenna and brightness temperature $T_{A}^{\star} = \frac{e^{\tau_{atm}}}{F_{eff}}T_{source}$ astronomical
signal $T_{mb} = \frac{e^{\tau_{atm}}}{B_{eff}}T_{source}$

to an ideal antenna located outside the atmosphere.

Which coupling coefficient: main beam, antenna or else?

INTERFEROMETERS REQUIRE A SECONDARY CALIBRATION

Equations for antenna and brightness temperature

	Equivalent resistor	Equivalent Black-Body
point source:	$S = \frac{2k}{\eta_A A} T_A^{\star}$	$S = \frac{2k}{\lambda^2} T_{\rm mb} \theta_b$
gaussians:	$S = \frac{2k}{\eta_A A} T_A^{\star} \frac{\theta_r^2}{\theta_{\rm mb}^2}$	$S = \frac{2k}{\lambda^2} T_{\rm mb} 1.13 \theta_r^2$

Calibration : from Kelvin to Jansky

Flux density

$$S_{\nu} = \int B_{\nu}(T_{\rm B}, \Omega) d\Omega$$
$$= \frac{2k}{\eta_A A} B_{\rm eff} T_{\rm mb}$$

and where

$$\frac{S_{\nu}}{T_{\rm mb}} = \frac{2k}{\eta_A A} B_{\rm eff} \qquad [\rm Jy/K]$$

> apply the radiometer equation :

$$\sigma(T_{\rm sys}) = \frac{\kappa T_{\rm sys}}{\sqrt{\Delta\nu\Delta t}}$$

- κ : observing mode specific coefficient
- $\Delta\nu$: bandwidth, spectral resolution
- Δt : integration time

A complete CO(2-1) Map of M51 with HERA

Schuster et al. (2008); Hitschfeld et al. (2009)