Imaging AGN at highest frequencies and resolutions

T.P.Krichbaum

(on behalf of the global 1mm VLBI/EHT team)

Max-Planck-Institut für Radioastronomie Bonn, Germany

tkrichbaum@mpifr.de

people involved in Global Millimeter VLBI (GMVA):

- MPIfR: W. Alef, U. Bach, A. Bertarini, T. Krichbaum, H. Rottmann, J.A. Zensus, et al.
- IRAM: M. Bremer, A. Grosz, S. Sanchez, K. Schuster, et al.
- OSO: J. Conway, M. Lindqvist, I. Marti-Vidal, et al.
- OAN: P. Colomer, P. de Vicente et al.
- **INAF:** S. Buttaccio, G. Tuccari et al.
- NRAO: W. Brisken, V. Dhawan, C. Walker, et al.

plus:

1mm VLBI, EHT collaboration (in 2013) :

A. Marscher, S. Jorstad et al.

- <u>APEX:</u> R. Güsten, K. Menten, D. Muders, A. Roy, J. Wagner, et al.
- Haystack: S. Doeleman, V. Fish, R. Lu, M. Titus, R. Capallo, et al.
- <u>CARMA:</u> G. Bower, R. Plambeck, M. Wright, et al.
- JCMT: P. Friberg, R. Tilanus, et al.
- <u>SMA:</u> R. Blundell, J. Weintroub, K. Young, et al.
- <u>SMTO:</u> R. Freund, D. Marrone, P. Strittmatter, L. Ziurys et al.

The Origin of Jets: Understanding BH – Disk – Jet coupling

Image Credit: Astronomy/Roen Kelly

- VLBI at mm- and sub-mm λ overcomes opacity barrier

- sub-mm and space VLBI reach Event Horizon scales

Specific Science goals

- main aim: high dynamic range imaging with VLBI at $\lambda \leq 1.3$ mm
 - map fine structure of BH-disk-jet systems (origin of jets)
 - map event horizon scale structures (light bending, photon ring, BH spin, etc.)
- study nearby objects with highest possible spatial resolution (SgrA*, M87,)
 - testing GR & alternative theories
- test energy budget via size measurements
 - kinetic or magnetic dominance, equipartition ?
- brightness temperature as function of frequency and jet distance
 - test jet launching models and jet particle composition (leptonic vs. hadronic)
- determine component spectra (global VLBI@ 7, 3, 1, 0.8 mm, + space VLBI)
 - turnover frequency and compactness, spectral evolution, shocks, SSA-models
- polarisation of AGN cores (plus RM)
 - test GR-MHD models, plasma-physics near BH and at jet base
- AGN survey (cosmological evolution of BHs, QSO/BL/RG statistics)
- absorption line VLBI (physics of circum-nuclear gas)

Millimeter VLBI with APEX/ALMA

Observations of Sgr A* v = 230, 345 GHz

Determine the shape of the event horizon

Mutual Visibility

uv coverage (Apex high-lighted)

APEX/ALMA connects 2 IRAM telescopes with the US stations

IRAM + APEX: ~5 hrs

USA + APEX: ~6 hrs

Angular Resolution: 20-30 µas @230 GHz

10-20 µas @345 GHz

Building a truly global 1.3 mm VLBI array Status March 2013 with APEX added

History of 1mm VLBI: 1995: PV-PdB (N=12, SNR~25) 2002: PV-SMTO (N=2, SNR~7) 2007: SMTO-CARMA-JCMT/SMA 2011: 1mm VLBI with Apex, NoF 2012: AP-SMA-SMTO, first fringes 2013: 1st global 1mm VLBI run

SNR of detection (LCP, low + high band)

230 GHz, March 21-27, 2013

		AP-CA	AP-SMA	AP-SMT	CA-SMA	CA-SMT	SMT-SMA	CA-PV	AP-PV	PV-SMT	PV-SMA
Source	Flux	AF	AP	AS	FP	FS	SP	FV	AV	VS	VP
	[Jy]										
OJ287	3,8				84	30	62				
3C84	10,0					36					
3C111	2,2					26					
3C2 73	4,1	23	13	12	39	74	15				
M87	1,5	11	6	6	13	32	8				
30279	10,8	16	6	7	49	172	29				
1337-129	3,4				30	67	39				
1749+096	1,9	31	9	13	22	48	7				
NRAQ530	1,4					10					
SGRA	3,1	(11)	6	6	22	59	16				
1033+382	4,1	30	12	13	48	41	17				
3C345	2,4				9						
1921-293	2,5	10	10	7	36	31	8				
2013+370	3,3	20	17	17	66	26	24				
BLLAC	8,0	115	67	75	248	156	225	13	15	9	7

14 sources on inter-US baselines, 9 sources on APEX baselines detected !

Note: due to weather, station performance and GST range, the SNR of the detected sources varies by a factor of 2-3

BL Lac: Modeling component trajectories through superluminal Alfvén – waves

BL Lac observed with Radioastron (1.3cm) and the Event Horizon Telescope (EHT, 1.3mm)

combination of cm-space VLBI and mm-ground VLBI – great potential for multifrequency studies with matched beam size

Comparison of BLLAc data 3mm GMVA & 1mm EHT

Energy Budget

core parameters from model fit : $S_m = 5.3 \text{ Jy}, \theta_m = 13 \mu as$

turnover frequency: spectrum inverted up to 1.3mm $\rightarrow v_m \approx 230$ GHz

equipartition Doppler-factor: $\delta_{eq} = 3 - 4$ magnetic field strength: $B_{core} = 2 - 8$ Gauss

energy dominance: $u_{mag}/u_{particle} > 1$, when $\delta \ge \delta_{eq}$ with $\delta \sim \beta_{app} \sim 10$ (observed at 15 GHz on pc) $\rightarrow u_{mag} / u_{part} = 5 \cdot 10^3$

but: we don't know δ on < 0.2 mas scales !! future: need kinematics also at 1mm, \rightarrow regular VLBI monitoring

New 86 GHz GMVA images of M87 jet reveal counter-jet

- first time that counter-jet is seen at 3mm
- peak $T_B \sim 2 \cdot 10^{10}$ K at core
- core size \leq 7.3 R_S, expected size of photon ring 41.3 µas (5.2 R_S)
- jet width ~ 40 R_s at r = 0.5 1 mas (at ~ 30 65 R_s)

M87: Gaussian Modelfit to combined data set of March 23, 2013

M87 at 230 GHz

Gaussian modelfit

no uvtaper

uniform weight, uvw 2,-2

Modelfit + Clean Map uvtaper 0.3@6Gλ uniform weight, uvw 2,-1

East west orientation of jet consistent with known 3mm VLBI structure

M87's core size falls below parabolic streamline estimate

Competing Jet Models

synchrotron self-absorbed conical jet plus relativistic shocks (Blandford-Königl jet) Radio core at different frequencies $(v_5 > v_4 > v_3 > v_2 > v_1)$ Central black hole and accretion flow VI v_2 V3 v4 $r_{\rm c}(\nu_5)$ $r_{\rm c}(\nu_4)$ $r_{\rm c}(v_3)$ $r_{\rm c}(v_2)$ $r_{\rm c}(v_1)$

Figure from Hada et al. 2011, Nature

stratified (MHD) jet with moving hot spots/shocks or filamentary patterns

still unclear of what is seen at 1mm, need high quality images

Spine-sheath structure in relativistic jet simulations

total velocity plots

Jets from fast spinning BHs develop a slower inner and faster outer jet sheath at v= 0.2 - 0.6 c \rightarrow jet edge-brightening and stratification on $\leq \sim 10$ R_S scales

Hardee, Mizuno, Nishikawa, Ap&SS, 2007

North-South extension seen at 1mm confirmed by 3mm VLBI

base of jet is transversely resolved and has a width of ~1 pc (~10⁴ R_S) size of individual components (emission regions) < 0.1 pc (1000 R_S)

SMA, 8 x 6m

composition: tkrichbaum@mpifr

image: EHT collaboration

<u>Angular Resolution:</u> 25-30 μas @230 GHz 15-20 μas @345 GHz

ALMA, 66 x 12 m

(angular resolutions calculated for 230 GHz)

SPT, 10m

Towards a global mm-/sub-mm VLBI array for BH imaging (Event Horizon Telescope)

New size estimate of SgrA* at 230 GHz (March 23, 2013)

SgrA*: an elliptical Gaussian better fits the

The compact emission region in SgrA* is not circular, but at least elliptical

Magneto-hydrodynamic plasma flows in Kerr space time

complex stratified and filamentary structures expected near BH variable on 1-1000 ISCO timescales

need high dynamic range multicolor and multi-epoch polarimetric submm VLBI imaging

McKinney, Tschekhovskoy, Blandford, 2012 & 2013

Globus & Levinson 2013 (Phys. Rev. D)

Magnetic fields and plasma jets are shaped by Birkeland currents

 stratified (multi-velocity) structures at jet base

helical and rotating jet filaments

Concluding Technical Remarks

- 1.3 mm long baseline fringes detected (≤9500 km) for APEX+IRAM+US
- compact (15-30 $\mu as)$ emission regions exist in most sources, many future VLBI targets
- APEX yields highest SNR to CARMA, the latter being the most sensitive northern station of the present 1mm VLB-array
- most sources are largely resolved, correlated flux decreases rapidly with uvdistance, compactness on longest baselines often is < 20%
- short and intermediate length uv-spacings are critical to recover all of the emission
- need < 10% calibration accuracy to discriminate between ambiguous models
- the combination of APEX/LLAMA with ALMA will provide the important very short uv-spacings, but only for southern sources