
Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

CASA Intro
Juergen Ott (NRAO)

Introduction to CASA
Juergen Ott (CASA project scientist)
Crystal Brogan (CASA ALMA subsystem scientist)
Bryan Butler (CASA VLA subsystem scientist)
Jeff Kern (CASA manager)

VLA

ALMA

3�

•  CASA is the offline data reduction package for ALMA and the VLA (data
from other telescopes usually work, too, but not primary goal of CASA)

•  Code is C++ (fast) bound to Python (easy access and scripting) (plus
some Qt or other apps)

•  Import/export data, inspect, edit, calibrate, image, view, analyze
•  Also supports single dish data reduction (based on ASAP)
•  CASA has many tasks and a LOT of tool methods
•  Easy to write scripts and tasks
•  We have a lot of documentation, reduction tutorials, helpdesk, user

forum
•  CASA has some of the most sophisticated algorithms implemented

(multi-scale clean, Taylor term expansion for wide bandwidths, W-term
projection, OTF mosaicing, etc.)

•  We have a active Algorithm Research Group, so expect more goodness

CASA (Common Astronomy Software Applications)

4�

 Outline
•  CASA startup
•  CASA basic python interface
•  Tasks and tools
•  The Measurement Set
•  Data selection syntax
•  Calibration
•  Imaging
•  Visualization tools
•  Image analysis
•  Build your own task!
•  User support/Documentation

5�

CASA (Common Astronomy Software Applications)

Current version: 4.0.1
New releases about every 6 months (May and November).

For download go to the CASA homepage:
casa.nrao.edu
We have versions for Linux, Mac OS X

In addition to the full release, we regularly create “stable” versions of CASA.
They are markers on the way to the next release with more functionality but
likely contain unfinished developments, less tested code, and no up-to-date
documentation. Download if you are brave enough, or if you want to check
for a bugfix.

6�

CASA Startup
$ casapy (or simply “casa”)

CASA Version 3.2.1 (r15198)
 Compiled on: Fri 2011/05/27 02:52:18 UTC

 For help use the following commands:
 tasklist - Task list organized by category
 taskhelp - One line summary of available tasks
 help taskname - Full help for task
 toolhelp - One line summary of available tools
 help par.parametername - Full help for parameter name
 Single Dish sd* tasks are available after asap_init() is run

Activating auto-logging. Current session state plus future input saved.
Filename : ipython.log
Mode : backup
Output logging : False
Raw input log : False
Timestamping : False
State : active
CASA <2>:

7�

CASA Interactive Interface
•  CASA runs within pythons scripts or through the interactive
 IPython (ipython.org) interface
•  IPython Features:

–  shell access
–  auto-parenthesis (autocall)
–  Tab auto-completion
–  command history (arrow up and “hist [-n]”)
–  session logging

•  ipython.log – ipython command history
•  casapyTIME.log – casa logger messages

–  numbered input/output
–  history/searching

8�

Basic Python tips

•  to run a python “.py” script:

execfile(‘<scriptname>’)

example: execfile(‘ngc5921_demo.py’)

Some python specialties:

•  indentation matters!

–  indentation in python is for loops, conditions etc.

–  be careful when doing cut-and-paste to python

–  cut a few (4-6) lines at a time

•  python counts from 0 to n-1!

•  variables are global when using task interface

•  tasknames are objects (not variables)

9�

Tasks and tools in CASA
•  Tasks - high-level functionality

–  function call or parameter handling interface
–  these are what you should use in tutorials

•  Tools - complete functionality
–  tool.method() calls, they are internally used by tasks or can be

used on their own
–  sometimes shown in tutorial scripts

•  Applications – some tasks/tools invoke standalone apps
–  e.g. casaviewer, casaplotms, casabrowser, asdm2MS

•  Shell commands can be run with a leading exclamation mark !du –hs
 (some key shell commands like “ls” work without the exclamation
mark)

Find the right Task

To see list of tasks organized by
type:

tasklist

Find the right Task

To see list of tasks with
short help:

taskhelp

12�

Task Interface
examine task parameters with inp :

13�

Task Interface
•  standard tasking interface, similar to AIPS, MIRIAD, etc.
•  parameter manipulation commands

•  inp, default, saveinputs, tget, tput
•  use parameters set as global Python variables

<param> = <value>

(e.g. vis = ‘ngc5921.demo.ms’)
•  execute

<taskname> or go (e.g. clean())

•  return values (except when using “go”)

•  some tasks return Python dictionaries, assign a variable name to
get them, e.g. myval=imval()

•  Very useful for scripting based on task outputs

14�

Expandable Parameters
•  Boldface parameters have subparameters that unfold when

main parameter is set

15�

Expandable Parameters
•  Boldface parameters have subparameters that unfold when

main parameter is set

16�

Expandable Parameters
•  Boldface parameters have subparameters that unfold when

main parameter is set

17�

Parameter Checking
sanity checks of parameters in inp :

erroneous
values in red

18�

Help on Tasks
In-line help:
help clean (or pdoc clean)

19�

Task Execution

•  In addition to typing in all variables in the task interface and executing
with go one can write the full parameter set in a line:

taskname(arg1=val1, arg2=val2, ...)
e.g.
clean(vis=‘input.ms’, imagename=‘galaxy’,selectvis=T,

robust=0.5, imsize=[200,200])
–  unspecified parameters will be set to their default values (globals

not used; i.e. not to previously set variables)
–  Useful in scripts, but also in ‘pseudo-scripts’:

•  To keep a record it is frequently a good idea to write down the
full line as above in an editor, then cut and paste into CASA.

•  When changes are needed, change in editor and cut and paste
again. That is good practice to keep a record of the exact input.

•  But note that the logger is also repeating the full task command

20�

Tools in CASA
•  What if there’s no task?
à  use CASA tools!
CASA tools are the building blocks for our tasks, so they contain all
functionality albeit less bundled tool objects are,
e.g. imager (im) , calibrater (cb), ms (ms), image (ia), etc. (see toolhelp)

•  Every tool has a bunch of methods, they are what you will use like:

functions.methods
call from casapy as <tool>.<method>()
e.g. ia.open(‘image.im’)

•  Typically, one has to open close a dataset explicitly, if it is not closed, it
may block other tasks from executing (table locks) and clutter the
memory

21 �

CASA Tool List
list of default tools from toolhelp :

"  tools described in the CASA Toolkit Reference:
" http://casa.nrao.edu/docs/CasaRef/CasaRef.html

22�

CASA Tool List
Execute tool methods…

"  tools described in the CASA Toolkit Reference:
" http://casa.nrao.edu/docs/CasaRef/CasaRef.html

23�

CASA Tool List

There’s a good chance that your
problem can be solved on the
tool level, don’t be afraid and use this resource!

~1000 tool methods available!

Tool methods described in the CASA
Toolkit Reference:

http://casa.nrao.edu/docs/CasaRef/CasaRef.html

24�

CASA data are Tables in Directories
•  The Measurement Set contains your visibilities.
 Images are in the CASA image format.
 Calibration information is stored in Calibration tables.

•  ALL of these are directories which contain the necessary information

•  So copy them via cp –r (or !cp –r within CASA),

•  you may need to tar them for data transfer.

•  Delete tables within casa via rmtables(‘universe.ms’)

 Outside CASA ‘rm –rf ’ , or in python os.system(‘rm –rf universe.ms’)
may also work. But those methods may leave traces in the cache.

25�

The Measurement Set

The Measurement Set (MS)

•  Contains the visibilities in the MAIN table in table.* files

•  also contains sub-tables
e.g. FIELD, SOURCE, ANTENNA, WEATHER etc.

sub-tables are sub-directories

•  The tb tools can manipulate the tables directly

•  Definition of the MS (and other formats) can be found on
 casa.nrao.edu à Using CASA à Other Documentation

26�

Example MS

Example: ls ngc5921.usecase.ms

" ls ngc5921.usecase.ms/FIELD

27�

MAIN Table Contents

Inspect with task browsetable (application casabrowser)

28�

MS Data Selection Syntax
 •  Frequently one likes to select a subset of visibilities to perform an

action, e.g., based on antennas, baselines, frequencies, time,
polarization etc. The standard CASA selection syntax is the
following:

•  field (spatial) string with source name or field ID
•  can use ‘*’ as wildcard, first checks for name, then ID
•  example: field = ‘1331+305’ ; field = ‘3C*’ ; field = ‘0,1,4~5’

•  spw (spectral) string with spectral window ID plus channels
•  use ‘:’ as separator of spw from optional channelization
•  use ‘^’ as separator of channels from step/width
•  example: spw = ‘0~2’ ; spw = ‘1:10~30;50~65’ ; spw =

‘2~5:5~54^5’

29�

Selection Syntax

•  timerange (temporal) - string with date/time range
•  specify ‘T0~T1’ , missing parts of T1 default to T0, can give ‘T0+dT’
•  example: timerange = ‘2007/10/16/01:00:00~06:30:00’

•  antenna - string with antenna name or ID
•  first check for name, then ID (beware VLA name 1-27, ID 0-26)
•  example: antenna = ‘1~5,11’ ; antenna = ‘ea*’, ‘!va’
•  Baselines: ‘ea01&ea10’
•  Antenna pad names are supported after ‘@’, e.g. ‘ea12@N01’ only

selects antenna ea12 when it was occupying the N01 antenna pad

30�

Selection Syntax

•  scan – the scan numbers (an execution sequence)
 e.g. can=‘3~14’

•  correlation – polarization products
 e.g. correlation=‘LL,RR,RL’

•  observation – an observation id (when mutiple observation runs

are merged together)

•  uvrange – select on uvranges
 e.g. uvrange=‘30m~600m’

31 �

Data Selection Example
standard selection parameters

e.g. for task gaincal:

" field and spw common standard selections
"  expandable selectdata with other selections as sub-parameters

32�

Calibration
•  Data structure: 2 data columns
•  DATA column (raw data)
•  CORRECTED_DATA (calibrated data)
•  A MODEL is constructed or provided
•  Calibration tables are used to transform DATA to the MODEL on

calibrators, then transferred to the source data
•  Sets of calibration tables applied incrementally (apply all previous

calibration tables before solving/application)
•  Applycal creates and overwrites CORRECTED_DATA (can split to

DATA)
 (a MODEL is usually attached as an image, but it can be reproduced as a
third column, setting “usescratch=T” keyword in setjy and clean)

33�

Calibration continued
•  Solvers (e.g. bandpass, gaincal, polcal, blcal)
•  Based on data x calibration - model

•  Uses Hamaker-Bregman-Sault Measurement Equation formalism (using
Jones and Mueller matrices)

•  Generate calibration tables by type, e.g. bandpass (B), gain (G,T), delay (K),
pol leakage (D), pol angle (X), place into equation

•  Some types have channel dependencies (Df,Xf) or polynomial (BPOLY) or
spline (GSPLINE) representations

•  Some caltables are created from other data: opacity, gain-elevation, Tsys,
antenna positions, etc. (task gencal)

è See the calibration talk

Imaging
•  FFT and deconvolution using clean task

•  Grid data onto uv-plane, transform to residual image, find model
components (minor cycles), transform back to data and subtract to form
residual data (major cycles), repeat [Cotton-Schwab clean]

•  Control of algorithms used (e.g. csclean, mosaic), automatic mapping to
output cube planes (mfs, channel, velocity, frequency)

•  Multi-frequency synthesis (mfs) for continuum, including higher order
Taylor (n)terms (intensity, alpha,…)

•  Mosaicing using convolutional gridding to single uv-plane, plus uv-faceting

34

35�

Visualization Tools
•  Data needs to be displayed to understand it!

–  Can be a challenge for large datasets

•  Visibilities: plotms, msview

•  Images: viewer, imview

•  Calibration tables: plotcal (soon plotms)

•  Any table values: browsetable

•  Single dish: sdplot

•  Plot anything: use Python’s matplotlib

36�

PlotMS

•  plotms

37�

Image Viewer

•  Image Viewer

38�

Image Viewer

•  Displaying cubes
•  Movies
•  Channel maps

Right Ascension

D
ec

lin
at

io
n

39�

Image Viewer

•  Displaying cubes
•  Movies
•  Channel maps

Right Ascension

D
ec

lin
at

io
n

40�

MSView

•  MS Viewer

41 �

Plotcal

•  MS Viewer

42�

Plot Anything - matplotlib

Image analysis

•  Immoments: create moment maps of spectral cubes
•  specfit: to fit 1-dimensional Gaussians and/or polynomial models to an

image or image region.
•  imfit : fit one or more spatial elliptical Gaussian components to sources
•  immath: use to do maths with images, or create spectral index maps
•  Also imstat, imval, imcollapse, …
•  Don’t forget the power of Python plus toolkit
•  Contributed scripts can be used (and submitted by you).
•  NRAO Contributed scripts are currently available on

 http://casaguides.nrao.edu/
•  We encourage to submit your own scripts to the NRAO forums:
 science.nrao.edu/forums

44�

Buildmytasks

•  Write your own task!
•  task_plotWX.py for the python code
import casac
from tasks import *
from taskinit import *
import pylab as pl
from math import pi,floor
#from matplotlib import rc

#rc('text', usetex=True)

###############
hides the extreme Y-axis ticks, helps stack plots close together without labels overlaping
def jm_clip_Yticks():
 xa=pl.gca()
 nlabels=0
 for label in xa.yaxis.get_ticklabels():
 nlabels+=1
 thislabel=0
 if nlabels>3:

45�

Buildmytasks

•  Write your own task!
•  task_plotWX.py for the python code
•  plotWX.xml for the interface and inline help
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" ?>
<casaxml xmlns="http://casa.nrao.edu/schema/psetTypes.html"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://casa.nrao.edu/schema/casa.xsd
file:///opt/casa/code/xmlcasa/xml/casa.xsd">

<task type="function" name="plotWX">
<shortdescription>Plot elements of the weather table for a given MS</shortdescription>

<input>

<param type="string" name="vis" kind="ms" mustexist="true">
<description>MS name</description>
<value></value>
</param>

<param type="double" name="seasonal_weight">
<description>weight of the seasonal model</description>
<value>0.5</value>
</param>

46�

Buildmytasks

•  Write your own task!
•  task_plotWX.py for the python code
•  plotWX.xml for the interface and inline help
•  Then build the task, best within CASA:
•  CASA <22>: !buildmytasks
•  This will create a few files like *cli*, *pyc, mytasks.py
•  Finally run
•  CASA<23>: execfile(‘mytasks.py’)
•  CASA<24>: inp plotWX

47�

Getting User Support

•  CASA Home: http://casa.nrao.edu
–  Reference Manual & Cookbook, online task/toolhelp, download, example

scripts

•  CASAguides.nrao.edu
–  For data reduction tutorials, tips, tricks, …

•  “Helpdesk” at help.nrao.edu (for ALMA: help.almascience.org)
–  Submit questions, suggestions, bugs (needs my.nrao.edu registration)

•  CASA mailing lists: casa-announce, casa-users

•  CASA topic in NRAO Science Forum: science.nrao.edu/forums

48�

CASA Documentation
•  Homepage: http://casa.nrao.edu à Using CASA

•  CASA Reference Manual & Cookbook:
http://casa.nrao.edu/Doc/Cookbook/casa_cookbook.pdf
http://casa.nrao.edu/docs/UserMan/UserMan.html

•  CASA Task Reference (same as inline help)
http://casa.nrao.edu/docs/TaskRef/TaskRef.html

•  CASA Toolkit Manual:
http://casa.nrao.edu/docs/CasaRef/CasaRef.html

•  CASAguides:
http://casaguides.nrao.edu

•  Python:
http://python.org/doc (e.g., see Tutorial for novices)

•  IPython:
http://ipython.org

•  matplotlib:
http://matplotlib.sourceforge.net/

Large but
detailed!

