Interferometry @ mm

Rosita Paladino – Jan Brand Italian Node of ALMA Regional Center

Slides & contributions from Arturo Mignano

http://www.alma.inaf.it/index.php/Courses

Ideas and slides borrowed from IRAM interferometry school

http://www.iram-institute.org/EN/content-page-248-7-67-248-0-0.html

NRAO interferometry school

https://science.nrao.edu/science/meetings/2016/15th-synthesis-imaging-workshop

LOFAR school

http://www.astron.nl/lofarschool2014/

European Radio interferometry (ERIS) school

https://www.eso.org/sci/meetings/2015/eris2015.html

Synthesis Imaging in Radio Astronomy: II - The "White Book"

Virtual Radio Interferometer http://www.narrabri.atnf.csiro.au/astronomy/vri.html

https://casaguides.nrao.edu/index.php?title=M100_Band3

Indeed the CORRELATOR performs a more complicated operation (i.e. the true cross-correlation) to deliver VISIBILITIES:

$$V^{ij}(\tau_g) = (V^i V^j) = \lim_{T \to \infty} \int_{-T/2}^{T/2} V^i(t) V^{j*}(t + \tau_g) dt$$

In the (2-D) uv-plane each visibility samples the FT of the (2-D) $B(\theta, \phi)$

(van Cittert-Zernike theorem)

Fourier space/domain $V(u,v) = \int \int T(x,y) e^{2\pi i (ux+vy)} dx dy$ $T(x,y) = \int \int V(u,v) e^{-2\pi i (ux+vy)} du dv$

Image space/domain

In the next two weeks we are going to deal with

visibilities and uv plane

To get familiar with them you can play with

🖈 a java applet online:

http://www.narrabri.atnf.csiro.au/astronomy/vri.html

or a python script written by Ivan Marti-Vidal (nordic ARC node) APSYNSIM

https://launchpad.net/apsynsim

1 D

2 D

Ideal uv plane

Snapshot observation with two antennas 1 baseline

← uv-coverage

8 hrs observation with two antennas 1 baseline (~2 km)

← uv-coverage

8 hrs observation with two antennas 1 baseline (~800 m)

← uv-coverage

Snapshot observation with 36 antennas 1260 baselines

← uv-coverage

Resulting image

Field of View $FOV \propto \frac{\lambda}{D}$

How to get this image of Cygnus A?

Credit: Image courtesy of NRAO/AUI; R. Perley, C. Carilli & J. Dreher

With increasing frequency:

★ No external human interferences in the data

☆ No ionospheric effect

- ★ Tropospheric effects: absorption and delay of signal
 - stronger weather dependency

☆ Time variability of quasar increases

which flux calibrators?

The role of troposphere

- H₂O (mostly vapor)
- "Hydrosols" (water droplets in clouds and fog)
- "Dry" constituents: O₂, O₃, CO₂, Ne, He, Ar, Kr, CH₄, N₂, H₂

clouds & convection = time variation

Column density as function of altitude

Tropospheric opacity depends on altitude

Tropospheric opacity depends on altitude

Difference due to the scale height of water vapor

ハ

00

At lower frequencies T_{rx} is dominant

ALMA front end are equipped with an Amplitude Calibration Device (ACD)

Before

Tsys calibration

Spectral Tsys band 3 (~100 GHz)

Before

Tsys calibration

Spectral Tsys band 3 (~100 GHz)

After

Mean effect of atmosphere on Phase

Variations in precipitable water vapor (PWV) cause phase fluctuations, worse at higher frequencies, resulting in:

- Phase shift due to refractive index $n \neq 1$
- Low coherence (loss of sensitivity)

Patches of air with different pwv (and hence index of refraction) affect the incoming wave front differently.

Antenna 1, 2, 3 see slightly different disturbances

Sky above antenna 4 varies independently

The phase change experienced by an e.m. wave can be related to pwv

$$\varphi_e \approx \frac{12.6 \,\pi}{\lambda} \cdot pwv$$

Atmospheric phase fluctuations

Phase noise

$$\varphi_{rms} = \frac{K b^{\alpha}}{\lambda}$$

Kolmogorov turbulence theory

b=baseline length (km) $\alpha = 1/3$ to 5/6 (thin or thick atmosphere) $\lambda =$ wavelength (mm) K constant (~100 for ALMA)

The break is typically @ baseline lenghts few hundred meters to few km (scale of the turbulent layers)

Break and maximum are weather and wavelength dependent

Atmospheric phase fluctuations \rightarrow decorrelation

We loose integrated flux because visibility vectors partly cancel out

$$\langle V \rangle = V_o \langle e^{i\varphi} \rangle = V_o e^{-(\varphi_{rms}^2)/2}$$

$$\Psi_{rms}$$
 = 1 radian \rightarrow = 0.60 V₀

In summary

Fluctuations in the line-of-sight pwv of an antenna cause phase variations of the order of ~30 deg / sec at 90 GHz, and scales linearly with frequency.... 12.6π

$$\varphi_e \approx \frac{12.6\,\pi}{\lambda} \cdot pwv$$

and the phase noise is worse at longer baselines...

$$\varphi_{rms} = \frac{K b^{\alpha}}{\lambda}$$

WVR correction

Each ALMA 12 m antenna has a water **vapour radiometer**

Four "channels" flanking the peak of the 183 GHz water line

Data taken every second

WVR correction

Each ALMA 12 m antenna has a water vapour radiometer

Four "channels" flanking the peak of the 183 GHz water line

Data taken every second

Convert 183 GHZ brightness to PWV (wvrgcal): model PWV, temperature and pressure compare to the observed "spectrum" compute the correction:

$$\varphi_e \approx \frac{12.6\,\pi}{\lambda} \cdot pwv$$

WVR correction

Band 6 (230 GHz)

Raw phases & WVR corrected phases

WVR correction

Band 6 (230 GHz)

Raw phases & WVR corrected phases

- with many challenges: - all are resolved on long baselines
 - brightness varies with distance from Sun and Earth
 - line emission present \rightarrow need models

Other possibilities: asteroids, red giant stars... Monitoring of point-like quasars

Flux calibrators

Model spetral lines: CO in Titan

Interferometric data

Modern interferometric observations are taken in multi-channel mode regardless if they are continuum or line observations

Data are actually **data cube:** from each channel (freq, velocity) 1 uv-plane

Interferometric data

Continuum images are obtained combining all the (line-free) channels.

Cont Freq

The resulting image is a 2-Dimensional image at the central frequency.

Interferometric data

Spectral lines

1-D slice along velocity axis

From each pixel one spectrum

Laboratorio ALMA IRA – Quarto piano (stanza in fondo al corridoio)

Lun 17, mar 18 ore 09:00 – 13:00 Mer 19 seminario UniBO Gio 20, Ven 21 ore 09:00 – 17:00

Lun 24, mar 25, mer 26 ore 09:00 – 13:00 Gio 27, Ven 28 ore 09:00 – 17:00