Imaging

Rosita Paladino

From lectures:

From lectures:

1

RESTORE: $I_f^r(\theta, \varphi) = I_{resid}(\theta, \varphi) + \sum_{i=1}^N A_i P_n^c(\theta_i, \varphi_i)$

 $I_f^r(\theta, \varphi) = \text{immagine finale del processo di$ **cleaning** $}$ $P_n^c(\theta, \varphi) = \text{clean beam, avente lobo principale identico al dirty beam, ma$ **privo di lobi secondari**

In the interferometer the signals from two antennas are cross-correlated each baseline measures one *visibility* (per int, per chan, per pol)

(van Cittert-Zernike theorem)

Fourier space/domain $V(u,v) = \int \int T(x,y)e^{2\pi i(ux+vy)}dxdy$ $T(x,y) = \int \int V(u,v)e^{-2\pi i(ux+vy)}dudv$

Image space/domain

V(u,v) = FT T(x,y)

But

we actually sample the Fourier domain at discrete points

where C(u,v) is the sampling function C= 1 at points where visibilities are measured and C = 0 elsewhere

* Yesterday's example with 2 point-like sources with APSYNSIM (I. Marti-Vidal)

Applying the convolution theorem:

The Fourier transform FT of the sampled visibilities gives the true sky brightness convolved with the Fourier transform of the sampling function (called **dirty beam**).

$$I^{D}(x, y) = B_{dirty}(x, y) \otimes I(x, y)$$

To get a useful image from interferometric data we need to Fourier transform sampled visibilities, and **deconvolve for the dirty beam** \rightarrow **clean**

Imperfect reconstruction of the sky

Incomplete sampling of uv plane → sidelobes

 $B_{dirty}(x, y)$

- Central maximum has width 1/(u_{max}) in x and 1/(v_{max}) in y
- Has ripples (sidelobes) due to gaps in uv coverage

deconvolution \rightarrow sidelobes removal

Need to choose:

Image pixel size (cellsize)

Make the cell size small enough for Nyquist sample of the longest baseline $(\Delta x < 1 / 2 \ u_{max}; \Delta y < 1 / 2 \ v_{max})$ Usually 1/4 or 1/5 of the synthesized beam to easy deconvolution

Image size (imsize)

The natural resolution in the uv plane samples the primary beam **At least twice the field of view for the Nyquist sampling** Larger if there are bright sources in the sidelobes of the primary beam (they would be aliased in the image)

Basic assumption: each source is a collection of point sources

1) Initializes the residual map to the dirty map and the Clean component list to an empty value

Basic assumption: each source is a collection of point sources

2) Identifies the pixel with the peak of intensity (I_{max}) in the residual map and adds to the clean component list a fraction of $I_{max} = \gamma I_{max}$

Basic assumption: each source is a collection of point sources

3) Multiples the clean component by the dirty beam and subtract it to the residual

Basic assumption: each source is a collection of point sources

4) Iterates until stopping creteria are reached

Stopping criteria

|I_{max}| < multiple of the rms
(when rms limited)</pre>

Basic assumption: each source is a collection of point sources

4) Iterates until stopping creteria are reached

Stopping criteria

|I_{max}| < multiple of the rms
(when rms limited)</pre>

Basic assumption: each source is a collection of point sources

4) Iterates until stopping creteria are reached

Stopping criteria

|I_{max}| < multiple of the rms
(when rms limited)</pre>

Basic assumption: each source is a collection of point sources

4) Iterates until stopping creteria are reached

Stopping criteria

|I_{max}| < multiple of the rms
(when rms limited)</pre>

Basic assumption: each source is a collection of point sources

 5) Multiples the clean components by the clean beam an elliptical gaussian fitting the central region of the dirty beam → restoring

Basic assumption: each source is a collection of point sources

5) Multiplies the clean components by the clean beam (**restore**) and add it back to the residual

Resulting image pixel have units of Jy per clean beam

But

Interferometer elements are sensible to direction of arrival of the radiation Primary beam effect $\rightarrow T(x,y) = A(x,y) T'(x,y)$

The response of the antennas in the array must be corrected for during imaging to get accurate intensities for source outside the core of the beam.

But

Primary beam effect \rightarrow T(x,y) = A(x,y) T'(x,y)

T(x,y)

T'(x,y)

rms 3e-3

But measured visibilities actually contain noise – – – and some uv ranges are sampled more than others

• Gridded visibilities are $\rightarrow V(u,v) = W(u,v) V'(u,v)$

 $\sigma(u,v) \propto \frac{1}{\sqrt{T_{\rm sysl} T_{\rm sys2}}}$

* Natural weighting $W(u,v) = 1/\sigma^2(u,v)$

 σ is the noise variance of the visibilities

* Uniform weighting $W(u,v) = 1/\delta_s(u,v)$

 $\delta_{\underline{v}}$ is the density of (u,v) points in a symmetric region of the uv plane

Unfortunately, in reality, the weighting which produces the best resolution (uniform) will often utilize the data very irregularly resulting in poor sensitivity \rightarrow compromises

***Briggs weighting**

combines inverse density and noise weighting. An adjustable parameter "robust " allows for continuous variation between natural (robust=+2) to uniform (robust=-2)

***** Weighting effects on the Dirty beam

Natural 0.29" x 0.23" Best sensitivity **Uniform** 0.24"x0.17" Best angular resolution

***** Weighting effects on the image

Natural res = 0.29" x 0.23" rms = 0.8 mJy/beam Uniform res = 0.24"x0.17" rms = 3 mJy/beam

If the region of interest is larger than the primary beam

If the region of interest is larger than the primary beam

need to mosaic many interferometric pointings

Clean is basically the same \rightarrow **need to specify the central pointing** (phasecenter) **the image size = full mosaic area and the mode 'mosaic'** (imagermode and ftmachine)

M100 example: 12 m array

ALMA Band 3 observations (FOV~51") 47 12m pointings are needed to cover ~200" square area ToS ~ 124 min

The mosaic primary beam response pattern is the convolution of individual HPBW of the different pointings

Image with 12 m data

The largest structures > $\theta_{MRS} \approx -$

are not recovered

 \rightarrow need ACA and possibly Total Power

Continuum images

Multi-Frequency synthesis (MFS)

Wide bandwidths allow higher sensitivity to continuum emission

$$\sigma = \frac{2k}{\eta} \frac{T_{\text{sys}}}{\sqrt{\Delta t \Delta \nu} \sqrt{N_{\text{ant}}(N_{\text{ant}} - 1)}A}$$

MFS combines all channels

the result is a single image

Continuum images

Multi-Frequency synthesis (MFS)

 Wide bandwidths allow higher sensitivity to continuum emission but also
 uv coverage is improved

$$\sigma = \frac{2k}{\eta} \frac{T_{\text{sys}}}{\sqrt{\Delta t \Delta \nu} \sqrt{N_{\text{ant}}(N_{\text{ant}} - 1)}A}$$

* Distance in the uv-plane is proportional to b/λ so observing a large range in wavelengths changes points in the uv-plane into lines.

Spectral line observations

- The imaging process

 is the same as for a continuum map
 but making an image for
 each channel (a cube with
 axes RA, DEC and velocity/frequency)
- * The rms is larger than for continuum
- While imaging it is possible to average channels if the full spectral resolution is not needed

Spectral line observations

- The imaging process

 is the same as for a continuum map
 but making an image for
 each channel (a cube with
 axes RA, DEC and velocity/frequency)
- * The rms is larger than for continuum
- While imaging it is possible to average channels if the full spectral resolution is not needed

Spectral line observations

- Spectral line data often contains continuum emission from the target which can complicate the detection and analysis of lines
- Model the continuum using channels with no lines: low-order polynomial fit
- Subtract this continuum model from all the channels
- It can be done before imaging in the uv plane (uvcontsub) or in the image plane (imcontsub)

Concluding remarks

Interferometry samples "partially" the Fourier components of the sky brightness, deconvolution attempts to correct for incomplete sampling

- First be sure that all the spatial scales you are interested in are actually sampled (if necessary require multiple arrays and SD)
- Imaging and deconvolution require care and astronomers judgement try different parameters (e.g weighting) to get the better results for your purposes
- It is difficult but it is worth the trouble!

Many more issues not covered in this talk \rightarrow please see

Book review: **Synthesis Imaging in Radio Astronomy II - The "White Book"** Astronomical Society of the Pacific Conference Series Volume 180 https://science.nrao.edu/science/meetings/2014/14th-synthesis-imaging-workshop http://www.iram-institute.org/EN/content-page-248-7-67-248-0-0.html https://casaguides.nrao.edu