# AGN feedback and molecular gas flows in clusters of galaxies: the ALMA view

# Myriam Gitti

DIFA – University of Bologna INAF – IRA Bologna



# **Outline of the talk**

#### Introduction

• intra-cluster medium (ICM), cooling flow (CF) and "cooling flow problem"

#### Radio-mode AGN feedback (as solution to CF problem)

- AGN/ICM interaction: cavity heating and CF quenching
- observations of X-ray cavities, radio bubbles and weak shocks
- > <u>ALMA observations of molecular gas in central galaxies</u>
  - massive extended CO filaments, smooth velocity gradients
  - AGN-driven gas outflows
  - direct uplift of molecular clouds or cooling in situ?

#### Conclusions

# **Clusters of galaxies and ICM**

#### 100-1000 galaxies + thermal ICM + DM + non-thermal components

The majority of baryons are in the form of diffuse, metal-enriched, hot plasma (intra-cluster medium, **ICM**) emitting in *X-rays* by thermal bemsstrahlung



# (ICM $\rightarrow$ ) Baryon physics is complex

Gas dynamical models of DM halos incorporating radiative cooling and gravitational heating alone produce *too much cold gas, too many young stars,* and *too few hot baryons (Bregman 2007, Balogh et al. 2011)*  $\rightarrow$  non-gravitational processes



X-ray observations of the ICM allow us to investigate the complex baryon physics, which is key to understand the cooling and feedback processes regulating galaxy formation

10-5

10

Benson et al. 2003

-25

M<sub>x</sub>-5logh

-20

# **Cooling Flow (CF) – standard model**

- **cooling time** *t*<sub>cool</sub> : characteristic time of energy radiated in X-rays
- cooling radius  $r_{cool}$  : radius at which  $t_{cool}$  = age of the cluster  $\approx H_0^{-1}$



!!! Note that..

'Cooling' = heat loss (by radiation) from the gas  $\rightarrow$  reduction in the specific entropy  $kT n_e^{-2/3}$ 

# **Cooling Flow (CF) – standard model**

• cooling time  $t_{cool}$ : characteristic time of energy radiated in X-rays • cooling radius  $r_{cool}$ : radius at which  $t_{cool} =$  age of the cluster  $\approx H_0^{-1}$ cooling region:  $r < r_{cool}$  Within  $r_{cool}$ ,  $t_{cool} < H_0^{-1}$   $\longrightarrow$  the cooling gas flows inward and is compressed

**Compression**  $\Rightarrow$  density  $n_e$  increases  $\Rightarrow$  X-ray emissivity ( $\propto n_e^2$ ) increases (Fabian 1994)



Credit: Allen + Fabian

## **CF** – observations



#### • molecular gas



#### **Evidence of cooling**

but SFR  $\ll$  X-ray cooling rates  $\downarrow$ classical "mass sink" CF problem

#### • H $\alpha$ filaments



## **CF** – observations

Lack of very cold gas !

XMM/RGS failed to show the strong emission lines expected from Fe XVII as the gas cooled below 0.7 keV

Gas drops to  $T_{min} \sim 0.3 T_{vir}$ Chandra spectra consistent

 $\dot{M} \lesssim (0.1 - 0.2) \dot{M}_{\rm X}$ 

#### ⇒ (soft X-ray) **CF problem**:

why, and how, is the cooling of gas below  $T_{min}$  suppressed?

[ new nomenclature: COOL CORE (CC) ]



## **CF problem – proposed solutions**

Signature
 of cooling
 ≤ 1-2 keV
 suppressed



- absorption
  (Peterson+01, Fabian+01)
- mixing with cooler gas/dust (Fabian+02, Mathews&Brighenti03)
- inhomogeneous metallicity (Morris&Fabian03)
- central AGN (e.g., Pedlar+90, Tabor&Binney93)
- thermal conduction (e.g., Rosner&Tucker89)
- subcluster merging (Markevitch+01)
- intra-cluster SNe (Domainko,Gitti+04)
- combinations/other...

 $\dot{M} \sim \dot{M}_X$ 

 $\dot{M} \sim 0.1 \, \dot{M}_X$ 

## Most promising solution to CF problem: Radio-loud AGN heat cluster gas



Credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA)

# Credit: Hydra A: Optical

Optical: Canada-France-Hawaii-Telescope/DSS

Hydra A: X-ray

Credit:

X-ray: NASA/CXC/U.Waterloo/C.Kirkpatrick et al.



Credit:

#### Hydra A: Radio

Radio: NSF/NRAO/VLA

ALMA Science and Proposals Workshop - Bologna, 25/02/19



Optical: Canada-France-Hawaii-Telescope/DSS X-ray: NASA/CXC/U.Waterloo/C.Kirkpatrick et al. Radio: NSF/NRAO/VLA

- most (~70%) CF clusters contain powerful radio sources associated with BCG
- central ICM shows "holes" often coincident with radio lobes (Chandra)



#### → the radio "bubbles" displace the ICM, creating X-ray "cavities"

(see reviews by McNamara & Nulsen 2007,2012; Gitti, Brighenti & McNamara 2012; Fabian 2012)



# **Cavity (+ shock) heating**



the kinetic energy created in the wake of the rising cavity is equal to the enthalpy *H* lost by the cavity as it rises:

$$E_{\text{cav}} = H = E_{\text{int}} + pV = \frac{\gamma}{\gamma - 1} pV = (2.5 \div 4) pV$$
  
thermal  $\gamma = \frac{5}{3}$  relativistic  $\gamma = \frac{4}{3}$ 

→ total energy of AGN outburst :

$$E_{\text{tot}} = E_{\text{cav}} + E_{\text{shock}} = 10^{55} - 10^{62} \text{ erg}$$

# X-ray cavities as gauges of AGN power



#### $\succ$ estimate of $P_{AGN}$ from $L_{radio}$

L\_\_\_\_\_ [1042 erg s<sup>-1</sup>]

radio

## The relationship between AGN power and $L_{cool}$

For a sample of cavity systems, calculate and compare:

• 
$$P_{AGN} \sim P_{cav} = \frac{E_{cav}}{t_{cav}} = \frac{4 \, pV}{t_{cav}}$$

**P**<sub>cav</sub> is a measure of the energy injected into the ICM by the AGN outburst

• 
$$L_{\text{cool}} = L_X$$
 inside  $r_{\text{cool}}$ 

 $L_{cool}$  is the luminosity that must be compensated for by heating to prevent cooling

→ it is found that the cavity power scales in proportion to the cooling X-ray luminosity, although with a big scatter

# **Quenching cooling flows**

#### **P**<sub>cav</sub> Birzan et al. (2008) O'Sullivan et al. (2011) Cavagnolo et al. (2010) 10<sup>3</sup> $S^{-1}$ ] വ 102 വി $[10^{42}]$ 101 cav 100 Д 10-1 Gitti et al. 2012 $10^{-2}$ 10-2 10-1 100 101 10<sup>2</sup> $10^{3}$ [10<sup>42</sup> erg s<sup>-1</sup>] ALMA Sc L<sub>cool</sub> L<sub>cool</sub>

#### **Cavity properties**

- diameter ~ 20-200 kpc
- $pV = 10^{55} 10^{61} \text{ erg}$
- ages =  $10^7 10^8$  yr
- $\bullet P = 10^{41} 10^{46} \, \mathrm{erg/s}$

trend: **feedback** 

# **Quenching cooling flows**

Sample mean values:

 $\begin{aligned} \left( L_{\text{cool}} = 4.1 \times 10^{44} \text{ erg/s} \right) \\ \left( P_{\text{cav}} = 6.2 \times 10^{44} \text{ erg/s} \right) \\ \left( duty\text{-cycle} \sim 70\% \right) \\ P_{\text{cav,d}} \approx (0.7 \times 6.2) \times 10^{44} \text{ erg/s} \end{aligned}$ 

Radiative losses of thermal ICM are balanced by mechanical heating from AGN *over the system lifetime* 



Myriam Gitti







# **Observations of X-ray cavities and shocks: catching the radio-AGN feedback in action**



## A 262: multiple generations of AGN feedback



- ♦ X-ray tunnel filled with *low-frequency* radio emission: multiple radio outbursts pile up and accumulate over several AGN activity cycles with  $\tau_{\rm rep} \ge 30 \text{ Myr}$
- ◆ source capable of offsetting radiative cooling over several outburst episodes

## A 2052: bubbles, shocks and sloshing



- Cavities surrounded by X-ray bright rims, filaments
- Ripple-like features  $\rightarrow$  two concentric weak shocks

Myriam Gitti

ALMA Science and Proposals Workshop - Bologna

0

. А

10

100

Radius (arcsec)

## MS 0735: the most powerful AGN outburst



→ powerful outbursts likely occur  $\sim 10\%$  of the time in *most* CF clusters

3

#### MS 0735: the most powerful AGN outburst



Myriam Gitti

ALMA Science and Proposals Workshop - Bologna, 25/02/19

Minor Axis (kpc)

#### Hydra A: evidence for mechanical outflows







Chandra hardness ratio map  $\frac{[1.5 - 7.5]\text{keV}}{[0.3 - 1.5]\text{keV}}$  $\rightarrow$  dark = low-T gas

- Soft filaments along the radio jets
- ◆ T 'plateau' in the region ~70-150 kpc (removed after masking filaments)

 $\rightarrow$  the filaments contain cool gas

#### Hydra A: evidence for mechanical outflows



◆ Spectral evidence for multi-phase gas along the filaments  $\begin{cases} kT_{hot} \sim 4.0 \text{ keV} \\ kT_{cool} \sim 1.6 \text{ keV} : M_{cool} \approx 10^{11} M_{\odot} \text{ lifted from the center} \end{cases}$ → outflows of ≈few 100s  $M_{\odot}/\text{yr}$  in the rising lobes  ◆ Iron enriched outflow
 → AGN-Jets disperse metals throughout ICM
 ΔM<sub>Fe</sub>≈5×10<sup>7</sup> M<sub>☉</sub>, R ~ 120 kpc

## **ALMA observations of molecular gas in central galaxies**



#### What is the role of molecular gas in feedback?

 $M \approx 10^9 - 10^{10} \text{ M}_{\odot}$  of molecular gas are prevalent in BGC at the center of cool core clusters with  $t_{cool} < 10^9 \text{ yr}$  (Edge 2001, Salomé & Combes 2003)





- Origin of molecular gas in BCG ?
- Is molecular gas fueling feedback?
- Does radio-mode feedback operate on molecular clouds?



#### **ALMA Early Science: extended filaments**

A 1664 and A 1835 show molecular gas filaments extending to 10 kpc from the BCG (*McNamara et al. 2014, Russell et al. 2014*)



- \*  $5\times 10^{10}\,M_{\odot}$  of molecular gas within 10 kpc of the BCG
- $10^{10} M_{\odot}$  molecular flow at 200-400 km/s lies beneath cavities with  $P_{\rm cav} \sim 10^{45}$  erg/s
- $\rightarrow$  molecular outflow driven by radio AGN ?

Unclear if the bubbles accelerated the molecular clouds themselves (it is difficult to lift dense molecular gas out of the central disk)  $\rightarrow$  molecular gas in the flow may have **cooled out of the hot plasma** in the updraft behind bubbles

A 1835

#### **Extended filaments of molecular gas in several BCGs**

#### Massive filaments each ~ few $\times 10^9$ - $10^{10} M_{\odot}$ and 3-15 kpc long



Filaments consist of many GMCs

ALMA Science and Proposals Workshop - Bologna, 25/02/19

#### Low velocities and low dispersions

PKS 0745:

- Modest velocities  $\pm 100 \text{ km/s}$ , narrow FWHM  $\sim 100 \text{ km/s}$
- Velocities too low for free fall in gravitational potential





ALMA Science and Proposals Workshop - Bologna, 25/02/19

#### Molecular gas not settled in the gravitational potential

- Massive filaments, low velocities  $\rightarrow$  merger origin is unlikely
- Low velocities compared to stars  $\rightarrow$  filaments not supported by rotation
- Highest velocities at large radii  $\rightarrow$  outflow?





Fabian et al. 2003; Conselice et al. 2001; Lim et al. 2008; Salome et al. 2011

#### **Molecular gas filaments extend towards cavities**

PKS 0745: massive filaments drawn up underneath X-ray cavities and radio lobes



#### A 1835 : gas flow drawn up around X-ray cavities

- Gas filaments likely cooled in the updraft of hot plasma behind bubbles
- Interaction with cold gas in radio-mode feedback



## **Phoenix : filaments shaped by recent radio-jet activity**

- $\approx 600~M_{\odot}/yr$  starburst + AGN bright in both X-ray/optical and radio
- $3 \times 10^{10} \, M_{\odot}$  of molecular gas with half in filaments around radio bubbles



## A 1795 : close entrainment of molecular gas flows by radio bubbles



## A 1795 : close entrainment of molecular gas flows by radio bubbles



## A 1795 : close entrainment of molecular gas flows by radio bubbles

![](_page_40_Figure_1.jpeg)

#### Direct uplift of molecular gas or cooling in situ ?

- Molecular gas structure shaped by radio bubble expansion
- Direct uplift of molecular gas clouds?

 $-P_{\rm cav} \sim 10^{43-45} {\rm ~erg/s}$ 

- High coupling efficiency required
- Rapid cooling of uplifted thermally unstable low entropy gas? (McNamara et al. 2016)
  - Molecular gas coincident with soft X-ray
  - Dust lanes

![](_page_41_Figure_8.jpeg)

)ec

#### **ALMA observations of group-centered Elliptical Galaxies**

The selected targets are among the closest examples of AGN feedback in massive elliptical brightest-group galaxies (**BGGs**)

![](_page_42_Figure_2.jpeg)

NGC 4636

5 kpc

#### ALMA observations of BGGs : CO vs. Hα and dust

![](_page_43_Figure_1.jpeg)

Molecular gas is a common presence in bright group-centered galaxies

#### ALMA observations of BGGs : CO vs. Hα and dust

![](_page_44_Figure_1.jpeg)

Molecular gas is a common presence in bright group-centered galaxies

## Cospatiality among X-ray / H $\alpha$ / [CII] / CO phases

X-ray image + Hα+[NII] contours + **CO cloud positions** (*Temi et al. 2018*)

![](_page_45_Figure_2.jpeg)

ALMA Science and Proposals Workshop - Bologna, 25/02/19

#### **Molecular mass and kinematics in BGG**

![](_page_46_Figure_1.jpeg)

#### **Molecular mass and kinematics in BGG**

![](_page_47_Figure_1.jpeg)

6

Flux [mJy]

#### **Molecular mass and kinematics in BGG**

![](_page_48_Figure_1.jpeg)

ADEC

-80

-88

-96 8

-104 -112

-120

-128

#### Multiphase Chaotic Cold Accretion (CCA)

![](_page_49_Picture_1.jpeg)

weak subsonic turbulence is enough to trigger CCA  $\rightarrow$  thermal

-4.45

-4.84

-5.22

-5.61

-6.00

Myriam Gitti

#### **Multiphase Chaotic Cold Accretion (CCA)**

![](_page_50_Figure_1.jpeg)

#### **Multiphase Chaotic Cold Accretion (CCA)**

![](_page_51_Figure_1.jpeg)

Myriam Gitti

ALMA Science and Proposals Workshop - Bologna, 25/02/19

<sup>52</sup> 

# **Conclusions**

- The main evidence of **radio-mode AGN feedback** is in cool-core clusters and groups
- Radio-mode AGN feedback manifests as collimated, massive subrelativistic bipolar outflows emerging from the BCG core, that inflate radio bubbles while carving X-ray cavities, heat the ICM and induce a circulation of gas and metals on scales of ≈ 100s kpc
- ◆ ALMA: molecular gas structures shaped by radio bubble expansion
   - Massive 10<sup>9</sup>-10<sup>10</sup> M<sub>☉</sub> filaments drawn up around and beneath radio bubbles
- Narrow molecular emission lines
  - extended filaments, ordered velocity structure, unbound GMAs
- Molecular gas likely cooled from hot gas - multiphase condensation

![](_page_52_Picture_7.jpeg)