

The connection between millimeter and gamma-ray emission in AGNs

Marcello Giroletti INAF Istituto di Radioastronomia

Secondo Workshop sull'Astronomia millimetrica e submillimetrica in Italia Bologna, 2-3 Aprile 2012

The Large Area Telescope (LAT) onboard Fermi

- Since 2008, Fermi-LAT is continuously monitoring the gamma-ray sky in the energy range ~100 MeV-100 GeV.
- After 2 years, Fermi has detected 1017 gamma-ray sources located at high galactic latitude that are associated statistically with AGNs (2LAC, Ackermann et al. 2011 ApJ 743)

2LAC

- A clean sub-sample of the 2LAC includes 395 BLL, 310 FSRQ, 157 unknown, 8 misaligned AGNs, 4 NLS1 (very different from EGRET!)
- The sources are characterized in 5 energy bands BLL are harder than FSRQ
- Radio data are available for all sources BLL are fainter and less powerful than FSRQ - for both classes, low frequency (1-8 GHz) spectral index is typically flat

Short gamma-ray variability time scales

From gamma-rays to mm-wavelength

- Gamma-ray variability implies compactness, compactness implies low frequency self-absorption
- Fermi sources call for millimeter observations. Indeed, some interesting results were obtained by Planck, but due to sensitivity limitations we are far from a clear understanding of radio spectra and broad-band SED

ALMA sensitivity for Fermi sources

- 1min ALMA rms about 0.2, 0.3, 0.6, 5.3 mJy beam⁻¹ at 100, 230, 345, and 675 GHz
- let's assume α = 0.5 (S_∝ ν^{-α}), this correspond to high significance detections for tens of Fermi blazars - note that the most intriguing sources have even flatter observed spectra
- still, no structural information
- need VLBI for that...

VLBI with ALMA?

- At present, Global Millimeter VLBI Array (GMVA)
 - ~14 participating telescopes (6 Europe, 8 VLBA) - Noto, SRT in the future(?)
 - 2 sessions per year
 - Baseline sensitivity 50-350 mJy
 - Angular resolution 40 µas

mm-VLBI	current	with ALMA	
sensitivity	100 mJy	10 mJy	
resolution	50 μ as	10 μas	

Angular and spatial resolution of mm-VLBI

λ	V	θ	z=1	z=0.01	d= 8 kpc
3 mm	86 GHz	45 µas	0.36 pc	9.1 mpc	1.75 µpc
2 mm	150 GHz	26 µas	0.21 pc	5.3 mpc	1.01 µpc
1.3 mm	230 GHz	17 µas	0.13 pc	3.4 mpc	0.66 µpc

- for nearby sources, these scales correspond to 1–100 Schwarzschild radii, depending on distance and black hole mass!
- linear size: 10³R_s (log M_{BH}=9), 30-100 R_s (log M_{BH}=9), 1-5 R_s (log M_{BH}=6)
- mm-VLBI is able to directly image the vicinity of SMBHs!
- best candidates: Sgr A*, M87

A near candidate for BH horizon: the radio galaxy M87

- d=16 Mpc
- low power but bright FR1 radio galaxy
- most massive black hole in nearby universe: M_{BH}=10⁹ M_{sun}
- Schwarzschild radius R_S=3.7 µas
- optical and X-ray jet with superluminal motions
- source detected at GeV/TeV energy

Coordinated VHE and MWL variability

- 2008: bright, fast TeV flare detected from all TeV telescopes (Acciari et al. 2009)
- VLBA 43 GHz radio core flux density increase
- (...but other TeV event show different MWL/radio characteristic, e.g. Harris et al. 2006, Giroletti et al. 2012)

M87 with present mm-VLBI

Locating the black hole in M87

CREATING A BLACK HOLE TELESCOPE

2: Combined Array for Research in Millimeter wave Astronomy – California

230 GHz VLBI of Sgr A* Doeleman et al. (2008) 10 & 11 April 2007 @3.84 Gbit/s

1. Submillimeter Array and James Clerk Maxwell Telescope – Hawaii

Fitting and resolving the size of Sgr A* with 1.3 mm VLBI

Doeleman et al. (2008)

Summary and outlook

- ALMA sensitivity and operating wavelength are ideal to access regions were gamma rays are most likely produced in AGNs
- As an element of a mm-VLBI array, ALMA will allow us to directly image the SMBH vicinity

