The early coevolution of galaxies with their black holes

Roberto Gilli INAF – Osservatorio Astronomico di Bologna

In collaboration with:

C. Norman, C. Vignali, E. Vanzella, F. Calura, F. Pozzi, M. Massardi, A. Mignano, V. Casasola, E. Daddi, M. Dickinson, K. Iwasawa, R. Maiolino, M. Brusa, F. Vito, J. Fritz, A. Feltre, G. Cresci, M. Mignoli, A. Comastri, G. Zamorani

SMGs as laboratories to study BH/galaxy coevolution

Major mergers of gas-rich galaxies are one of the main channels to build massive BH/galaxy systems (Menci+08, Hopkins+08)

~80% of SMGs at z~2-3 are irregular or interacting systems (Chen+14)

Gas in the ISM: fuel for SF and AGN accretion (and perhaps obscuration)

AGN at z~1 preferentially reside in gas rich, SF galaxies (Vito+14a)

Possibly connected with the higher gas fraction and merger rate at high-z (Menci+08, Lamastra+10)

LESS 73 = ALESS 73.1 = XID403 @ z=4.75 in the CDFS Weiss+09 Hodge+13 Xue+11

 F_{870} =5.0 ± 1.4 mJy L_{IR} ~6x10¹² L_{sun} SFR ~ 1000 M_{sun} /yr (Coppin+09) ULIRG at z~5 LESS 73 = ALESS 73.1 = XID403 @ z=4.75 in the CDFS Weiss+09 Hodge+13 Xue+11

4Ms Chandra $N_{H} = 1.4^{+0.9}_{-0.5} \times 10^{24} \text{ cm}^{-2}$ $L_{x} \sim 2 \times 10^{44} \text{ erg/s}$ 5.7Ms (preliminary) $N_{H} = 1.5^{+0.6}_{-0.3} \times 10^{24} \text{ cm}^{-2}$ $L_{x} \sim 3 \times 10^{44} \text{ erg/s}$

7.0Ms by mid 2015

ALMA Cycle 0 detection at 1.3mm (band 6)

beamsize = 0.84 x 0.71 arcsec FWHM

"filler" target S/N ~ 35 in 3 min on-source $F_{1,3} = 2.47 \pm 0.07 \text{ mJy}$ 0.002 Source marginally resolved (3σ) 0.0015 Gaussian FWHM = 0.27 ± 0.08 arcsec 0.001 \rightarrow r_{half} ~ 0.9 ± 0.3 kpc 0.0005 ALMA constrains size of dust/SF ALMA vs LABOCA

Dust and stellar mass

Gas content

Source compactness: gas and SFR density

SFR surface density:

 $\Sigma_{\rm SFR}$ ~200 M_{sun}/yr/kpc² similar to distant ULIRGs (Genzel+10) Outflowing gas very likely, strong function of $\Sigma_{\rm SFR}$ (Bordoloi+13)

Gas surface density: Σ_{gas} ~5x10⁹ M_{sun}/kpc²

Total gas column density: 0.3-1.1 x 10²⁴ cm² comparable with X-ray column

➔ significant obscuration produced in the host ISM? (Z is solar) no pc-scale absorber (torus) needed?

Dynamical mass

M* from SED wrong because of AGN contamination?

6.3hr FORS2/VLT

N v 1240A with line P-Cygni profile in local Lyman Break Analogs (LBAs; Heckman+11): winds from O-type stars.

Source compactness in UV/optical rest-frame

Unresolved in GOODS-S (ACS) and CANDELS (WFC3) data Vanzella+09 Guo+13, Wiklind+14, Chen+14

ACS: FWHM<0.1" ; r_e <0.3 kpc WFC3: FWHM<0.3" ; r_e <0.9 kpc

perhaps resolved in deep K-band imaging with HAWK-I@VLT (Fontana+14) (r_e~0.9 kpc; under investigation) Dominant Compact Object in 40% of LBAs with r_e~0.1 kpc i.e. 0.03" at z=4.75: cannot be resolved by HST

→UV/optical source properties compatible with pure SF emission

Problems with the disk dynamical model?

Offset between observed and expected [CII] emission

Two-clump model provides an excellent fit to the data (N. Bouche' priv. comm.)

clump sep. ~0.4", can be resolved in Cycle 3

XID403 as a progenitor of a compact QG at z~3

Barro+13

Stellar density: Σ_{*}=1.8x10¹⁰ M_{sun}/kpc²
→ ultracompact system (Cassata+11)

M* built in a few x10⁸ yr. SF will end in 10⁷ yr and leave a compact QG by z~3

SF that builds M* is occurring on the same scales (< 1 kpc)

Conclusions on XID403

- XID403 hosts a compact and warm starburst around a heavily obscured supermassive black hole at z=4.75 \rightarrow ideal laboratory to study coevolution of galaxies and black holes in the early universe.

-Dust and SF confined within $r_{half} \sim 0.9$ kpc. ISM density and metallicity enough to produce the absorption measured in the X-rays. No pc-scale obscurer needed?

-Tension between SED-based M_{dust} and M_* vs M_{dvn} to solve

- UV/optical light likely produced by stars. Evidence from stellar winds from hot and young (O) stars associated to the strong, 1000 M_{sun}/yr , starburst

- Sub-kpc, dense stellar core in place. ALMA shows that SF is indeed happening on those scales. Besides the mass, SFR, gas depletion timescale, XID403 has also the right size to be the progenitor of a compact and massive QG at z~3.

Future prospects

