The Herschel view of the on-going star formation in the Vela-C molecular cloud

T. Giannini (OAR), D. Elia (IAPS), D. Lorenzetti (OAR), and the HOBYS team

The Vela-C cloud

it is the cloud "C" of the Vela Molecular Ridge (Murphy & May, 1991), I = 263° - 265°, b = 0° - +2°

distance = 700 ± 200 pc (Liseau et al. 1992)

 site of star formation on a wide range of masses (Massi et al. 2003; Baba et al. 2006)

Herschel observations

Vela – C observed with PACS and SPIRE in parallel mode as part of the Herschel key-program HOBYS (Herschel imaging survey of OB Young Stellar OBjects

Simultaneous photometry at five wavelengths between 70 μm and 500 μm

Giannini et al. 2012 A&A, 539, 156

Catalogue building

Band	N	Sens. limit (Jy)	90% Compl. limit (Jy)
All	1686		
70 µm	658	0.04	0.21
160 µm	871	0.09	0.67
250 µm	966	0.11	1.07 (BLAST : 17)
350 µm	697	0.33	1.32 (BLAST : 22)
500 µm	416	0.46	1.95

SPIRE sensitivity ~ 20 times better than BLAST

catalogue of 1686 sources (5σ)

sources spatially associated to obtain a band merged catalogue

Peak of source number at 250 μm (loss of sensitivity at longer wavelengths)

• multiple associations at $\lambda \ge 160 \ \mu m$

\Rightarrow 268 objects selected for SED fitting

Herschel HPBW (500 μm) = 35.7", ALMA (870 μm) : FoV = 18", ang.res. : 0.45"-1.55"
ALMA sensitivity at 870 μm : ~ 0.1 Jy (5σ , 1 min)

- SED fitted with a modified black-body function
- Grid of models : 8 K \leq T \leq 40 K; 10 μ m $\leq \lambda_0 \leq$ 40 μ m, nfor $\lambda_0 > \lambda_0$
- the emission is optically thin
- Derived parameters: T,M,d, L

STARLESS:

- sources not detected at 70 μm PROTOSTELLAR:

- sources with a 70 μm flux above the best fit by more than 3 σ or
- detected at $\lambda < 70 \ \mu$ m by other surveys

⇒ 218 starless sources
⇒ 48 protostellar sources

Physical parameters

Parameter	Starless (218)			Protostellar (48)		
	median	average	min-max	median	average	min-max
$M (M_{\odot})$	3.3	5.5	0.13-55.8	2.7	4.8	0.15-29.1
T_d (K)	10.0	10.3	8.0-15.2	11.4	12.8	9.0-24.2
D (pc)	0.064	0.067	0.025-0.13	0.040	0.040	0.025-0.07
$L_{\rm FIR}$ (L _o)	0.17	0.22	0.04-4.8	0.6	8.0	0.08-138

RED: starless BLUE : protostellar

Sizes from 0.025 pc to 0.13 pc: mixture of cores and clumps

 On average, protostellar sources are more compact and warmer than the starless ones.
 Both colder than interstellar medium (T~ 14 K, Hill et al. 2011)

Wide range of masses; 8 sources have M > 20 M_o

Prestellar sources

• To determine if a starless core is gravitationally bound (then pre-stellar), a comparison of its mass with the corresponding Bonnor- Ebert mass has been performed $(M_{pre} > 0.5M_{BE})$

Effects of turbulence and magnetic field discarded

 206 out of 218 (~94%) starless cores have been recognized as pre-stellar, (69% in the Aquila Rift)

in a mass vs size plot, all the unbound sources are close to the mass detection limit (~0.05 M_☉)
 ⇒need of much higher sensitivity to effectively probe the ratio of the bound/unbound sources

The Source Mass Distribution

• The prestellar source mass distribution was fitted as N(log M) \propto M^{- γ}

• Fit from the completeness mass limit of $4M_{\odot} \Rightarrow \gamma = 1.1 \pm 0.2$

• With BLAST : $\gamma = 1.9 \pm 0.2$ for M > 14 M_{\odot} (Netterfield et al. 2009)

• This value is intermediate between $\gamma = 0.7$ of large CO clumps (Kramer et al. 1998) and $\gamma = 1.3$ of the IMF ... but if we consider only sources with d<0.08pc $\Rightarrow \gamma = 1.4$

Possible flattening at masses close to the completeness limit?

⇒at the Vela-C distance the Herschel spatial resolution is not sufficient to probe cloud cores

First Conclusions

The Herschel-HOBYS survey of Vela-C in the FIR has revealed a numerous population of pre- and proto-stellar cores

.....but

need of higher sensitivity to :

- probe the faintest and much numerous population
- understand whether or not the very high percentage of bound cores is real or not
- probe the mass distribution up to subsolar masses
- need of higher spatial resolution to :
 - resolve the high degree of multiplicity in the largest Herschel beams
 - probe the core mass distribution without contamination of larger structures

Joint ALMA and BLAST-Pol

Collaboration with Northwestern University, Osservatorio di Arcetri

Aim: to study the role of the magnetic field in the gravitational collapse through similarities between cloud magnetic fields (30000 AU) and infall morphologies (1000 AU).

 In a magnetically dominated scenario a flattened inner core forms with its symmetric axis parallel to the local B-field.

 The 'Axehead' in Vela-C is the ideal target since it was observed with BLAST-Pol at 250 μm (50 hr, data under reduction)

Project feasibility

- Method: sample of Herschel selected prestellar and protostellar cores : sources in different evolutionary stages selected based on the 250 μ m/mid-IR flux (Akari, MSX, Wise) (e.g. F(250 μm /F(9 μm) > 100 ⇒ Class 0 protostar, Enoch et al. 2009)
- Direction of the B-field from BLAST-Pol
- Core morphology from ALMA observations at 345 GHZ
- CASA simulation of a Class 0:

left: original 350 μm data (from SHARC-II of the B-field/SHARP at CSO);
 right: simulated ALMA 345 GHz image at the distance of Vela-C.

⇒ Despite some artifacts, the position angle of the inner core's major and minor axes are preserved.

