

Probing the initial conditions of MSF through observations of N_2D^+

Francesco Fontani

INAF-Osservatorio Astrofisico di Arcetri (OAA)

M. Audard	ISDC & Observatoire de Genève
M. Butler	University of Florida
G. Busquet	INAF-IFSI, Roma
P. Caselli	University of Leeds
A. Isella	California Institute of Technology,
I. Jimenez-Serra	Harvard-Smithsonian CfA, Boston
A. Palau	Universitat de Barcelona
A. Sanchez-Monge	INAF-OA Arcetri, Florence
S. Leurini	Max-Planck Institut für Radioastronomie, Bon
J. Tan	University of Florida

.

Presentation outline

- 1 The initial conditions in Massive Star Formation: Accretion vs Coalescence
- 2 Deuterated molecules
- 3 N_2D^+/N_2H^+ in massive cores (IRAM-30m): identifying the best targets where to study the initial conditions (Fontani et al. 2011, A&A, 529, L7)
- 4 N_2D^+ at high angular resolution (ALMA cycle-0 !!): Testing theories (Accretion vs Coalescence) through targeted observations (Tan et al., in prep.)
- 5 Summary, conclusions, outlook

High-mass star format

PROBLEM:

The radiation pressure of the "emb $M_* > 8M_{sun} CANNO$

SOLUTIONS:

1. MERGING / COALESCENCE MODELS:

Courtesy of L. Carbonaro

Fragmentation of a massive starless core into low-mass seeds which keep accreting from unbound gas, and/or merge through collisions

(e.g. Bonnell et al. 1998, 2001, Bonnel & Bate 2005, 2006)

2. ACCRETION MODELS:

Non-spherical collapse (massive disks) of a massive starless core into a single high-mass star or close binary system (e.g. Wolfire & Cassinelli 1978, Yorke & Sonnhalter 2002, Tan & McKee 2003)

Initial conditions: predictions

1. <u>Accretion models</u> :

- ✓ Virial-equilibrium conditions: YES
- ✓ Non-thermal support dominant: YES (turbulence, B...)
- ✓ SINGLE high-mass star or close binary (M>> $M_{J,th}$); CMF = IMF

2. <u>Merging / coalescence models</u> :

- ✓ Virial-equilibrium conditions: NO
- ✓ Non-thermal support dominant: NO (thermal fragmentation)
- ✓ MANY low-mass protostellar seeds (M~ $M_{J,th} \le M_{\odot}$); CMF ≠ IMF

Testing theories with observations of massive starless cores: **PROBLEMS**

- ✓ Massive starless core are **RARE**
- ✓ Typical distances greater than 1 kpc: **SMALL ANGULAR SIZE**
- ✓ Surrounded by large amount of other gas. CONFUSION
- FREEZE-OUT of species commonly used to derive physics and kinematics

High CO (and CS) DEPLETION FACTOR $f_D = X(CO)^T/X(CO)^O > 1$ (e.g. Caselli et al. 2002, Tafalla et al. 2004, Fontani et al., 2012 accepted)

T < 20 K

 $n(H_2) > 10^5 \text{ cm}^{-3}$

2. If CO depletes

(i.e. if $n \ge 10^5 \text{ cm}^{-3}$)

 H_3^+ and H_2D^+ remain abundant

INAF - Arcet

 $H_3^+ + X \iff XH^+ + H_2$ XD^+ and XH^+ abundant and XD^+/XH^+ increases $H_2D^+ + X \iff XD^+ + H_2$

Conditions 1 and 2 are typical in dense pre-stellar cores: XD^{+}/XH^{+} orders of magnitude larger than the [D/H] IS value (10⁻⁵)

 $H_3^+ + CO \iff HCO^+ + H_2$

 $H_2D^+ + CO \iff DCO^+ + H_2$

 $N(N_2D^+)/N(N_2H^+)$ in low-mass SF

PROBLEM: is Dfrac = $N(N_2D^+)/N(N_2H^+)$ good to trace the earliest phases of MSF too?

STRATEGY: to measure Dfrac in MASSIVE CORES in different evolutionary stages 10 High-Mass Starless Cores (HMSCs) 10 High-Mass Protostellar Objects (HMPOs)

7 Ultracompact HII regions (UC HIIs)

OBSERVATIONS: Rotational transitions of N₂H⁺ & N₂D⁺; IRAM-30m Telescope

METHOD: N(N₂H⁺), N(N₂D⁺) from fits to the hf structure of N₂H⁺(3-2) and N₂D⁺(2-1)

$$N_{\rm tot} = \frac{8\pi^{3/2}\Delta v}{2\sqrt{\ln 2}\lambda^3 A} \frac{g_l}{g_u} \frac{\tau}{1 - \exp(-hv/kT_{\rm ex})} \frac{Q_{\rm rot}}{g_l \exp(-E_l/kT_{\rm ex})} ,$$

Caselli et al. 2002

N_2D^+/N_2H^+ in massive cores

 N_2D^+ (2-1), N_2H^+ (3-2) spectra

Statistical separation between HMSCs and HMPOs/UCHIIs: Kolmogorov-Smirnov test: P ~ 0.004 The best targets to study the initial conditions of MSF!!

Initial conditions: predictions

1. <u>Accretion models</u> :

Massive starless core in virial-equilibrium: YES

Non-thermal support: DOMINANT (turbulence, B...)
 SINGLE high-mass stars or close binaries (M>>M_{1th}); CMF = IMF

2. <u>Merging / coalescence models</u> :

Massive starless core in virial-equilibrium: NO
 Non-thermal support: NOT DOMINANT (thermal fragmentation)
 MANY low-mass protostellar seeds (M~M_{J,th}≤M_☉); CMF ≠ IMF

Dynamics of massive starless cores

Target: 4 HMSCs with: Dfrac>0.2, Σ >0.2 g cm⁻², 70µm-dark (MIPS & Herschel)

Goal: Virial analysis of the DENSE GAS at high-angular resolution

Tool: N_2D^+ (3-2), $n_{crit} \sim 3x10^6$ cm⁻³

Instrument: ALMA (cycle-0) compact configuration

Dynamics of massive starless cores from N_2D^+ observations

Dynamics of massive starless cores from N₂D⁺ observations

Virial equilibrium?

σ _{vir} = 1.089	(M _{core} /6	$0~{ m M}_{\odot})^{1/4}$	Σ _{clump} /0	.2 g/cm ²) ^{1/4} km/s
$\mathbf{R}_{core} = 0.127$	(M _{core} /	60 M _☉) ^{1/2}	² (Σ _{clump}	0.2 g/cm ²) ^{-1/2} pc
8-90	M_{\odot}	0.2-	0.3 g/cm ²	McKee & Tan 2003

	Predictions		Observations:		
	σ _{vir} (km/s)	R(pc)	σ _{obs} (km/s)	R(pc)	
C1-N	0.47	0.11	0.29	0.11	
C1-S	0.61	0.14	0.44	0.14	
F1	0.34	0.076	0.36	0.063	
F2	0.36	0.081	0.25	0.083	
G2-N	0.30	0.071	0.27	0.069	
G2-S	0.24	0.049	0.34	0.049	

ŝ

-4"04'30"

1°26'30'

"26'00"

Dec.

Summary - Conclusion

(1) the N₂D⁺/N₂H⁺ is higher at the pre-stellar stage, then drops of one order of magnitude (on average) during the HMPO and UC HII stages → perfect to identify cores where to study the initial conditions even in massive cores Fontani et al. 2011, A&A, 529, L7

(2) The most promising HMSCs observed with ALMA in N₂D⁺(3-2) harbour single or double dense cores.
 Most of them in close-to-virial conditions → consistent with Accretion models (but more work to do...)

Tan et al. in prep.

Tomorrow

GOALS:

a. To increase the ANGULAR RESOLUTION;b. To increase the CHEMICAL/PHYSICAL DIAGNOSTICS;c. To run MODELS

TOOLS:

- a. INTERFEROMETERS ~ 1 ", 3000 4000 A.U. @ 3-4 kpc b. NH_3 , NH_2D , H_2CO , HDCO, H_2O , HDO, (sub-)mm and cm continuum
- c. Caselli, Tan, Hennebelle, van Loo et al... 🙂

