Fragmentation of massive dense clumps: unveiling the initial conditions of massive star formation (ALMA cycle-1 accepted project)

FRANCESCO FONTANI
INAF-Osservatorio Astrofisico di Arcetri

Maite Beltràn
Riccardo Cesaroni
Alvaro Sanchez-Monge
Leonardo Testi
Malcolm Walmsley
Jan Brand
Andrea Giannetti

Benoit Commerçon
Patrick Hennebelle
Paola Caselli
Steven Longmore
Jonathan Tan
Richard Dodson
Maria Rioja

ENS Lyon (F)
ENS Paris (F)
MPE (D)
U Liverpool (UK)
U Florida (US)
ICRAR (AUS)
ICRAR (AUS)
1. **PRE-STEellar PHASE:**

2. **PROTO-STEellar PHASE**

3. **PRE-MAIN SEQUENCE PHASE**

Shu, Adams & Lizano 1987
Astrophysical context and motivation

Two relevant timescales in the standard theory:

\[t_{\text{acc}} = \frac{M_*}{(dM/dt)} \]

\[t_{\text{K-H}} = \frac{GM_*^2}{R_*L_*} \]

- \(M_* < 8M_\odot \): \(t_{\text{acc}} < t_{\text{K-H}} \) \quad \text{pre-main sequence: YES}
- \(M_* > 8M_\odot \): \(t_{\text{acc}} > t_{\text{K-H}} \) \quad \text{pre-main sequence: NO}
- accretion on MS !
Basic Problem of the Standard Model:

The radiation pressure of the "embryo star" stops accretion when $M_* > 8 M_{\text{sun}}$ cannot form.

Solutions:

1. **Competitive-Accretion:**
 Fragmentation of a massive clump into many low-mass seeds which keep accreting from unbound gas, and/or merge through collisions
 (e.g. Bonnell et al. 1998, 2001, Bonnell & Bate 2005, Wang et al. 2010)

2. **Core-Accretion:**
 Fragmentation of a massive clump inhibited, and non-spherical collapse into a single high-mass star or close binary system

Fragmentation of the parent clump crucial.
Fragmentation influenced by:

(e.g. Krumholz 2006; Hennebelle et al. 2011)

Gravity vs Magnetic support

Intrinsic turbulence

Protostellar feedback
Astrophysical context and motivation

Predictions of theoretical models:
(Hennebelle et al. 2011; Commerçon et al. 2012)

\[\mu = \frac{(M/\Phi)}{(M/\Phi)_{\text{crit}}} \]

- \(\mu = 2 \), dominant magnetic support
- \(\mu = 130 \), faint magnetic support

Core separation \(\sim 1000 \) A.U.
Masses: from 0.2 to 10 \(M_\odot \)

The role of magnetic field can be tested deriving the population of fragments (or cores) in pristine massive clumps
Astrophysical context and motivation

Predictions of theoretical models: magnetic vectors
(Hennebelle et al. 2011; Commerçon et al. 2012)

$\mu = 2$, dominant magnetic support \hspace{1cm} \mu = 130$, faint magnetic support

\Rightarrow The role of magnetic field can be tested deriving the population of fragments (or cores) in pristine massive clumps
Testing theories with observations

Problems:

- Massive starless clumps are **RARE**
- Typical distances greater than 1 kpc: **SMALL ANGULAR SIZE**
- Surrounded by large amount of other gas: **CONFUSION**
- **FREEZE-OUT** of species commonly used to derive physics and kinematics

\[T < 20 \text{ K} \]
\[n(H_2) > 10^5 \text{ cm}^{-3} \]

High CO (and CS) DEPLETION FACTOR

\[f_D = \frac{X(\text{CO})_{T}}{X(\text{CO})_{O}} > 1 \]

(e.g. Caselli et al. 2002, Tafalla et al. 2004, Fontani et al. 2012)
The need for ALMA (cycle-1)

- Few studies with linear resolution 1500 – 2000 AU so far

- Current facilities (except ALMA) cannot reach the requested sensitivity (0.2 M⊙ ~ Jeans mass) in reasonable integration times for many sources

- ALMA in cycle-1 offers: (1) the sensitivity and (2) the angular resolution appropriate for this project

...but finding good targets is challenging!
The sample

Initial sample: 95 millimeter continuum clumps, MSX-dark (Fontani+2005; Beltrán+2006; Fontani+2012; Sánchez-Monge+2013; Giannetti+2014)

1.2 mm + MSX @ 8 μm
The sample

Selection criteria:

1. Potential sites of massive star formation
2. Cold and chemically young
3. Not blended
4. Dense

1. Mass, $N(H_2)$, $\Sigma(H_2) >$ threshold values for massive star formation
2. CO depletion factor $f_D \geq 7$
3. Clumps isolated, or separated by more than the SIMBA HPBW from other clumps and signposts of star formation activity
4. Detection in the (non-depleted) high-density gas tracer N_2H^+
The sample

11 entries

1. Potential sites of massive star formation
2. Cold and chemically young

Table 1: Sample of massive dense clumps and general properties: coordinates, distance, deconvolved angular diameter, gas mass, gas temperature, H_2 column density, mass surface density and CO depletion factor.

<table>
<thead>
<tr>
<th>Source</th>
<th>R.A.(J2000)</th>
<th>Dec.(J2000)</th>
<th>d</th>
<th>θ_s</th>
<th>M</th>
<th>T_k</th>
<th>$N(H_2)$</th>
<th>$\Sigma(H_2)$</th>
<th>f_{CO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>08477–4359c1</td>
<td>08:49:35.13</td>
<td>-44:11:59</td>
<td>1.8</td>
<td>35.6</td>
<td>86.73</td>
<td>19</td>
<td>1.42</td>
<td>0.24</td>
<td>7</td>
</tr>
<tr>
<td>13039–6108c6</td>
<td>13:07:14.80</td>
<td>-61:22:55</td>
<td>2.4</td>
<td>40.3</td>
<td>101.5</td>
<td>17</td>
<td>0.68</td>
<td>0.12</td>
<td>22</td>
</tr>
<tr>
<td>15470–5419c1</td>
<td>15:51:28.24</td>
<td>-54:31:42</td>
<td>4.1</td>
<td>24.2</td>
<td>310.2</td>
<td>18</td>
<td>1.37</td>
<td>0.36</td>
<td>35</td>
</tr>
<tr>
<td>15470–5419c3</td>
<td>15:51:01.62</td>
<td>-54:26:46</td>
<td>4.1</td>
<td>54.1</td>
<td>743.4</td>
<td>19</td>
<td>1.11</td>
<td>0.17</td>
<td>36</td>
</tr>
<tr>
<td>15557–5215c2</td>
<td>15:59:36.20</td>
<td>-52:22:58</td>
<td>4.4</td>
<td>41.3</td>
<td>633.4</td>
<td>23</td>
<td>1.55</td>
<td>0.22</td>
<td>32</td>
</tr>
<tr>
<td>15557–5215c3</td>
<td>15:59:39.70</td>
<td>-52:25:14</td>
<td>4.4</td>
<td>35.8</td>
<td>194.3</td>
<td>15</td>
<td>0.49</td>
<td>0.09</td>
<td>24</td>
</tr>
<tr>
<td>16061–5048c1</td>
<td>16:10:06.61</td>
<td>-50:50:29</td>
<td>3.6</td>
<td>28.1</td>
<td>284.3</td>
<td>25</td>
<td>1.66</td>
<td>0.31</td>
<td>12</td>
</tr>
<tr>
<td>16061–5048c4</td>
<td>16:10:06.61</td>
<td>-50:57:09</td>
<td>3.6</td>
<td>62.8</td>
<td>504.2</td>
<td>13</td>
<td>1.22</td>
<td>0.11</td>
<td>34</td>
</tr>
<tr>
<td>16435–4515c3</td>
<td>16:47:33.13</td>
<td>-45:22:51</td>
<td>3.1</td>
<td>17.7</td>
<td>147</td>
<td>12</td>
<td>1.20</td>
<td>0.55</td>
<td>73</td>
</tr>
<tr>
<td>16482–4443c2</td>
<td>16:51:44.59</td>
<td>-44:46:50</td>
<td>3.7</td>
<td>$\ll 24^a$</td>
<td>59.08</td>
<td>16</td>
<td>1.89</td>
<td>3.4</td>
<td>25</td>
</tr>
<tr>
<td>16573–4214c2</td>
<td>17:00:33.38</td>
<td>-42:25:18</td>
<td>2.6</td>
<td>7.29</td>
<td>108.3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Not blended

SIMBA 1.2 mm + Spitzer 24 μm
Beltrán+06, A&A, 423, 2342

<table>
<thead>
<tr>
<th>HPBW ~ 24”</th>
</tr>
</thead>
</table>

4. Dense

APEX N_2H^+(3-2), towards SIMBA peak

<table>
<thead>
<tr>
<th>HPBW ~ 19”</th>
</tr>
</thead>
</table>
Immediate objective

Goals: 1- CORE POPULATION (mass, number, geometric distribution)
2- KINEMATICS
 at a linear resolution comparable to the typical fragment separation (~ 1000 A.U.)

Tracers: 1- Continuum @ 280 GHz;
2- $N_2H^+ (3-2), n_{crit} \sim 3 \times 10^6 \text{ cm}^{-3}$

Instrument configuration: C32-5, $\theta\sim0.27''$ @ 280 GHz

Integration time: 20 minutes o. s. (3$\sigma\sim0.27$ mJy, i.e. 0.07 M_\odot)
$\mu = \frac{(M/\Phi)/(M/\Phi)}{\text{crit}}$

$\mu = 2$, dominant magnetic support

$\mu = 130$, faint magnetic support

What we expect to see…
Project postponed to cycle-2......