
Fragmentation of massive dense clumps: unveiling the initial conditions of massive to romation (ALMA cycle-1 accepted project)

FRANCESCO FONTANI INAF-Osservatorio Astrofisico di Arcetri

Maite Beltràn Riccardo Cesaroni Alvaro Sanchez-Monge Leonardo Testi Malcolm Walmsley Jan Brand Andrea Giannetti INAF-OAA INAF-OAA INAF-OAA ESO & INAF-OAA INAF-OAA INAF-IRA INAF-IRA / MPIFR (D) Benoit Commerçon Patrick Hennebelle Paola Caselli Steven Longmore Jonathan Tan Richard Dodson Maria Rioja ENS Lyon (F) ENS Paris (F) MPE (D) U Liverpool (UK) U Florida (US) ICRAR (AUS) ICRAR (AUS)

Astrophysical cont

BASIC PROBLEM of the STANDARD 1.

The radiation pressure of the "em

M_{*}>8M_{sun} CANNOT

SOLUTIONS:

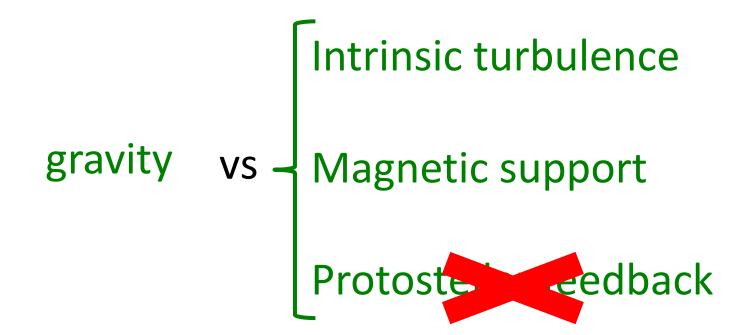
1. COMPETITIVE-ACCRETION:

Fragmentation of a massive clump into hany low-mass seeds which keep accreting from unbound gas, and/or no rge through collisions (e.g. Bonnell et al. 1998, 2001, Bonnell & Bate 2005, Vang et al. 2010)

MERGING

RETION

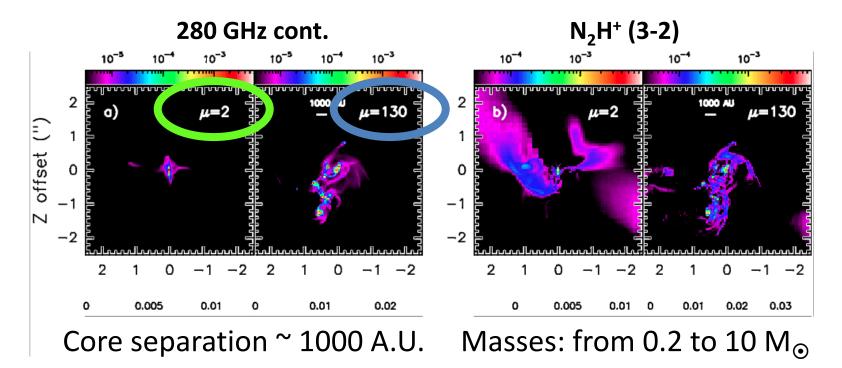
Courtesy of L. Carbonaro


2. CORE-ACCRETION:

Fragmentation of a massive clump hibited, and non-spherical collapse into a single high-mass star or close binary system (e.g. Wolfire & Cassinelli 1978, McLaughlin & Fridritz 1996, Yorke & Sonnhalter 2002, Tan & McKee 2003)

Fragmentation of the parent clump crucial

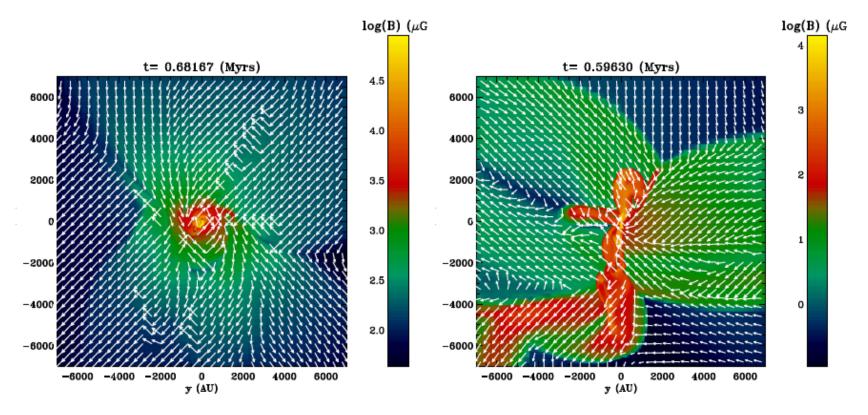
Fragmentation influenced by:


(e.g. Krumholz 2006; Hennebelle et al. 2011)

Predictions of theoretical models:

(Hennebelle et al. 2011; Commerçon et al. 2012)

 $\mu = (M/\Phi)/(M/\Phi)_{crit}$ $\mu = 2, dominant magnetic support$ $\mu = 130, faint magnetic support$


The role of magnetic field can be tested deriving the population of fragments (or cores) in pristine massive clumps

Predictions of theoretical models: magnetic vectors

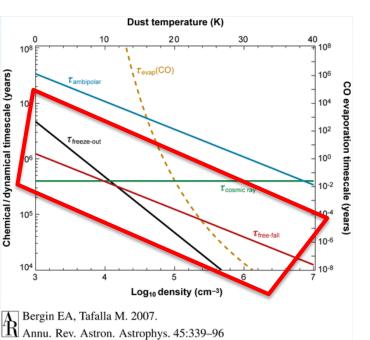
(Hennebelle et al. 2011; Commerçon et al. 2012)

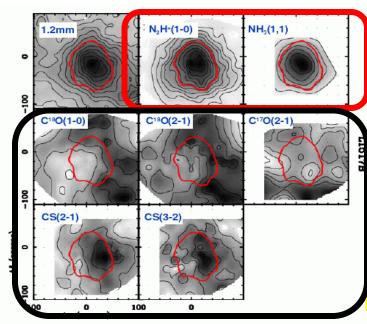
 μ = 2 , dominant magnetic support

 μ = 130, faint magnetic support

The role of magnetic field can be tested deriving the population of fragments (or cores) in pristine massive clumps

Testing theories with observations


Problems:

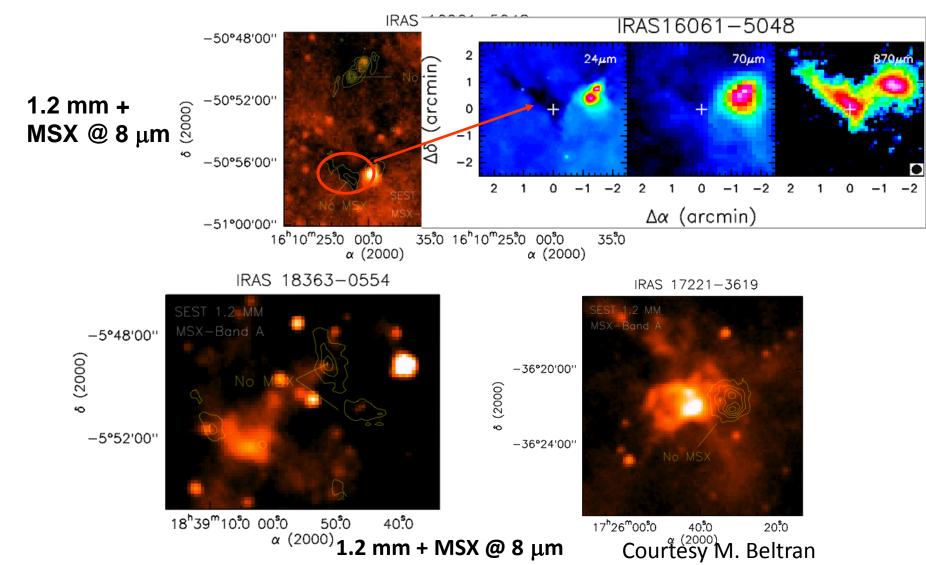

- Massive starless clumps are RARE
- Typical distances greater than 1 kpc: SMALL ANGULAR SIZE
- Surrounded by large amount of other gas: CONFUSION
- FREEZE-OUT of species commonly used to derive physics and kinematics

T < 20 Kn(H₂) > 10⁵ cm⁻³

High CO (and CS) DEPLETION FACTOR $f_D = X(CO)^T/X(CO)^O > 1$

(e.g. Caselli et al. 2002, Tafalla et al. 2004, Fontani et al. 2012)

The need for ALMA (cycle-1)


- Few studies with linear resolution 1500 2000 AU so far
- Current facilities (except ALMA) cannot reach the requested sensitivity (0.2 M_{\odot} ~ Jeans mass) in reasonable integration times for many sources
- ALMA in cycle-1 offers: (1) the sensitivity and (2) the angular resolution appropriate for this project

...but finding good targets is challenging!

The sample

Initial sample: 95 millimeter continuum clumps, MSX-dark

(Fontani+2005; Beltrán+2006; Fontani+2012; Sánchez-Monge+2013; Giannetti+2014)

The sample

Selection criteria:

- 1. Potential sites of massive star formation
- 2. Cold and chemically young
- 3. Not blended
- 4. Dense

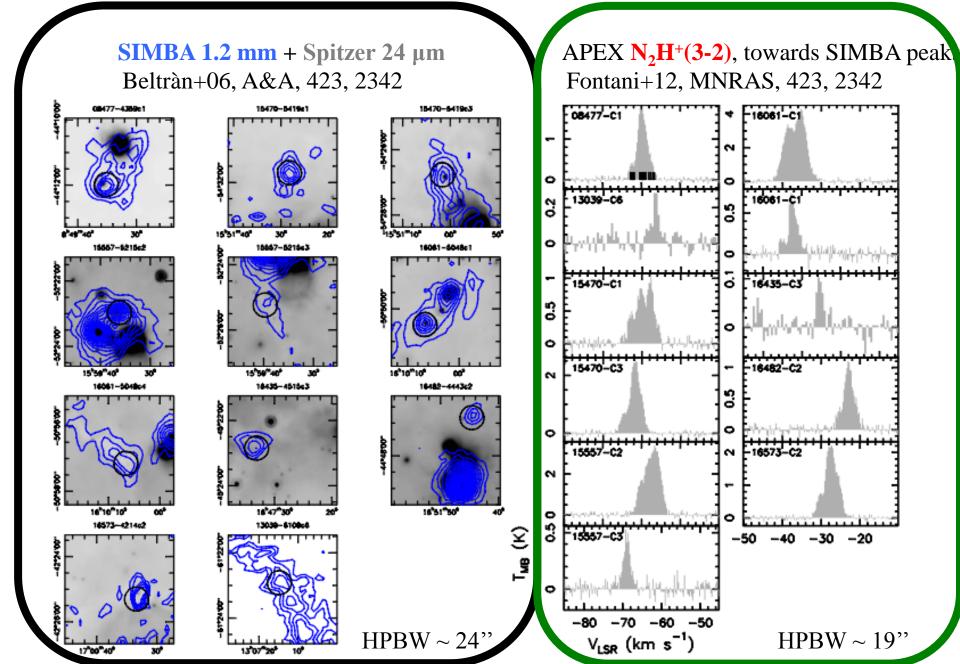
- 2. CO depletion factor $f_D \ge 7$
- 3. Clumps isolated, or separated by more than the SIMBA HPBW from other clumps and signposts of star formation activity
- 4. Detection in the (non-depleted) high-density gas tracer N_2H^+

The sample

11 entries

1. Potential sites of massive star formation

2. Cold and chemically young


Table 1: Sample of massive dense clumps and general properties: coordinates, distance, deconvolved angular diameter, gas mass, gas temperature, H_2 column density, mass surface density and CO depletion factor.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Source			-					1 10	1	fco
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08477-4359c1	08:49:35.13	-44:11:59	1.8	35.6	86.73	19	1.42	0.24		7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13039 - 6108c6	13:07:14.80	-61:22:55	2.4	40.3	101.5	17	0.68	0.12		22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15470 - 5419c1	15:51:28.24	-54:31:42	4.1	24.2	310.2	18	1.37	0.36		35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15470 - 5419c3	15:51:01.62	-54:26:46	4.1	54.1	743.4	19	1.11	0.17		36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15557 - 5215c2	15:59:36.20	-52:22:58	4.4	41.3	633.4	23	1.55	0.22		32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15557 - 5215c3	15:59:39.70	-52:25:14	4.4	35.8	194.3	15	0.49	0.09		24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16061 - 5048c1	16:10:06.61	-50:50:29	3.6	28.1	284.3	25	1.66	0.31		12
$16482 - 4443c2 16:51:44.59 -44:46:50 3.7 \ll 24^a 59.08 16 \gg 4.63^a \qquad 0.66 9$	16061 - 5048c4	16:10:06.61	-50:57:09	3.6	62.8	504.2	13	1.22	0.11		34
	16435 - 4515c3	16:47:33.13	-45:22:51	3.1	17.7	147	12	1.20	0.55		73
16573-4214c2 17:00:33.38 -42:25:18 2.6 7.29 108.3 17 1.89 3.4 25	16482 - 4443c2	16:51:44.59	-44:46:50	3.7	$\ll 24^a$	59.08	16	$\gg 4.63^a$	0.66		9
	16573 - 4214c2	17:00:33.38	-42:25:18	2.6	7.29	108.3	17	1.89	3.4		25

Fontani+12, MNRAS, 423, 2342

3. Not blended

4. Dense

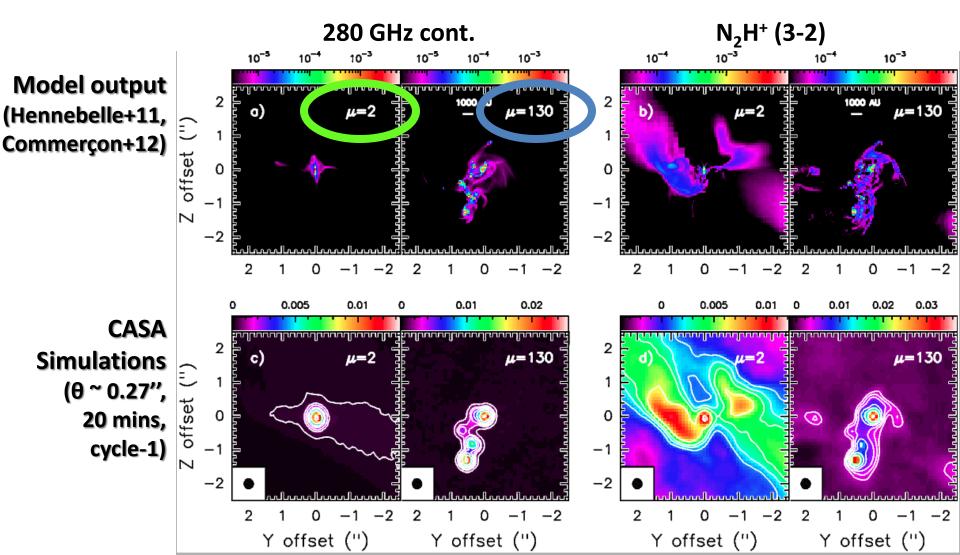
Immediate objective

Goals: 1- CORE POPULATION (mass, number, geometric distribution)

2- KINEMATICS

at a linear resolution comparable to the typical fragment separation (~ 1000 A.U.)

Tracers: 1- Continuum @ 280 GHz; 2- N_2H^+ (3-2), $n_{crit} \sim 3x10^6$ cm⁻³


Instrument configuration: C32-5, θ~0.27" @ 280 GHz

Integration time: 20 minutes o. s. $(3\sigma \sim 0.27 \text{ mJy}, \text{ i.e. } 0.07 \text{ M}_{\odot})$

What we expect to see....

 $\mu = 2$, dominant magnetic support

 $\mu = (M/\Phi)/(M/\Phi)_{crit}$ μ = 130, faint magnetic support

Project postponed to cycle-2.....

