Frequently Asked Questions

Francesco Costagliola (thanks to E. Liuzzo e A. Mignano)

Frequently Asked Questions

Francesco Costagliola (thanks to E. Liuzzo e A. Mignano)

Goals:

- Derive observation parameters from previous observations or theoretical estimates
- Choose the right setup for your science goal

Topics:

- Continuum and line peak sensitivity
- Spectral resolution
- Spatial filtering and maximum recoverable size
- Dynamic range

- You find unresolved single dish observations in the literature, with a main beam brightness temperature T_{sp} and beam size θ_{sp}
- What is the required sensitivity for ALMA observations at

 θ_{ALMA} resolution ?

θ_{sd}

θ

- The source is smaller than the ALMA beam (point source)
- Flux in Jy/beam independent of the beam
- $F_{sD} = 2 \text{ k } T_{sD} \Omega_{sD} / \lambda^2$
- $\mathbf{F}_{ALMA} = \mathbf{F}_{SD}$

 $\boldsymbol{\theta}_{\mathsf{SD}}$

- The source is smaller than the ALMA beam (point source)
- Flux in Jy/beam independent of the beam
 A tip: use the time

•
$$\mathbf{F}_{sD} = 2 \mathbf{k} \mathbf{T}_{sD} \mathbf{\Omega}_{sD} / \lambda^2$$

•
$$\mathbf{F}_{ALMA} = \mathbf{F}_{SD}$$

A tip: use the time calculator to easily convert K to Jy

θ

ALMA Proposal preparation day - Bologna - 9 April 2015

 $\boldsymbol{\theta}_{\mathsf{SD}}$

A

- The source is larger than the ALMA beam, with size θ_s and a uniform brightness temperature T_s
- Flux in Jy/beam depends on O_{ALMA}
- $F_{sD} = 2 \text{ k } T_{sD} \Omega_{sD} / \lambda^2$
- $\mathbf{F}_{ALMA} = \mathbf{F}_{SD} (\mathbf{\Theta}_{ALMA} / \mathbf{\Theta}_{S})^{2}$

or

$$F_{ALMA} = 2 k T_s \Omega_{ALMA} / \lambda^2$$

ALMA Proposal preparation day - Bologna - 9 April 2015

 $\boldsymbol{\theta}_{\mathtt{SD}}$

In the time calculator:

- A source is observed with a single dish with θ_{sp}=10" and has T_{sp}= 1 K at 300 GHz
- Which is the sensitivity required for ALMA observations at θ_{ALMA} =1" resolution ?

Point source:

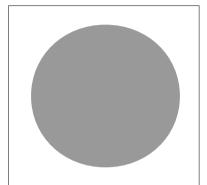
•
$$F_{ALMA} = F_{SD} = 2 \text{ k } T_{SD} \Omega_{SD} / \lambda^2$$

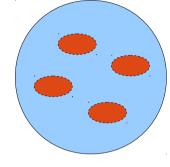
= 7.36 Jy/beam

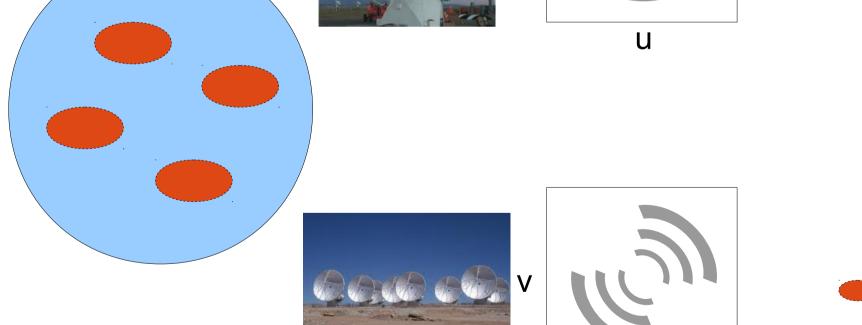
Extended uniform source

•
$$F_{ALMA} = F_{SD} (\theta_{ALMA} / \theta_{S})^{2}$$

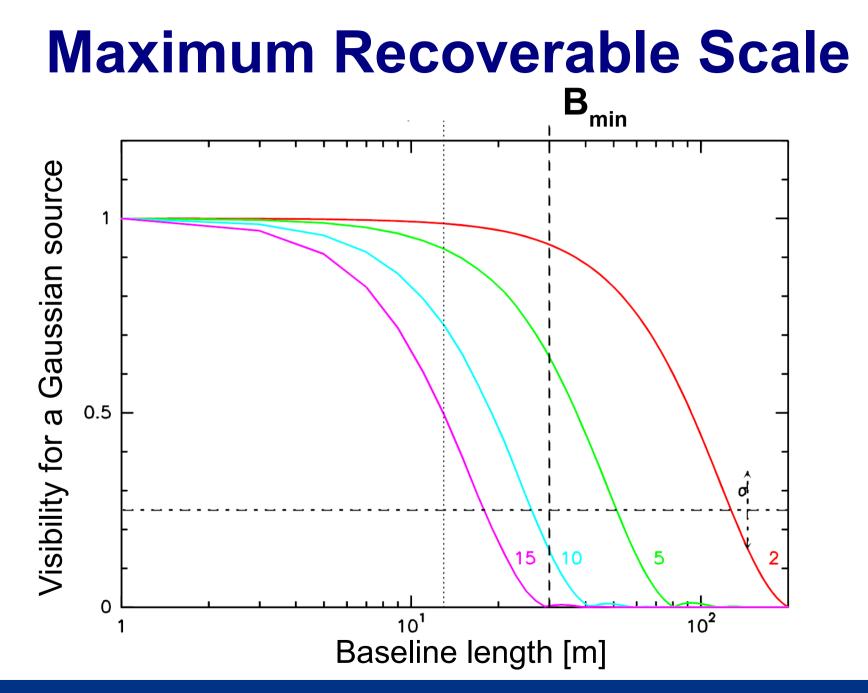
= 0.0736 Jy/beam

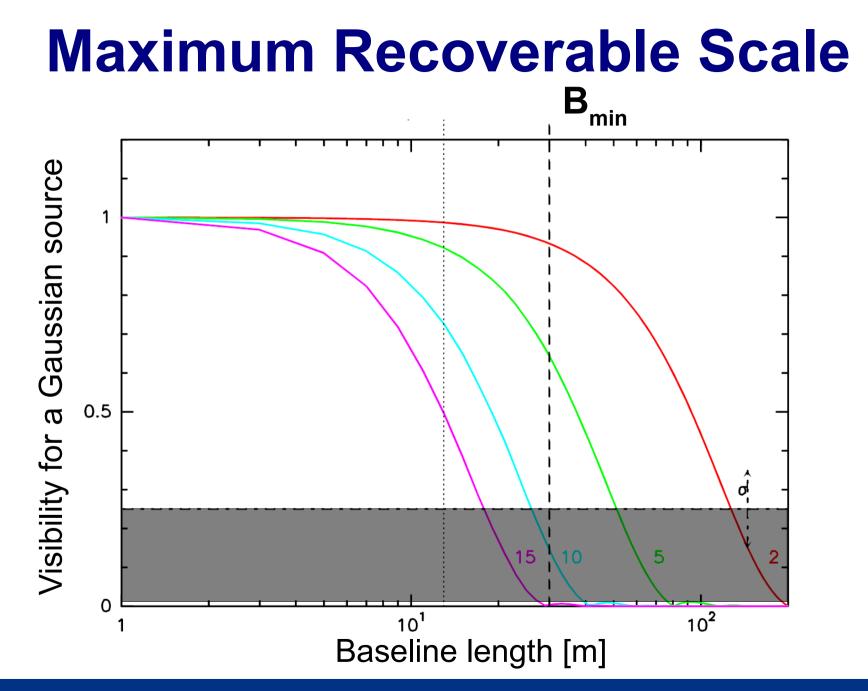

A factor 10,000 in exposure time !!

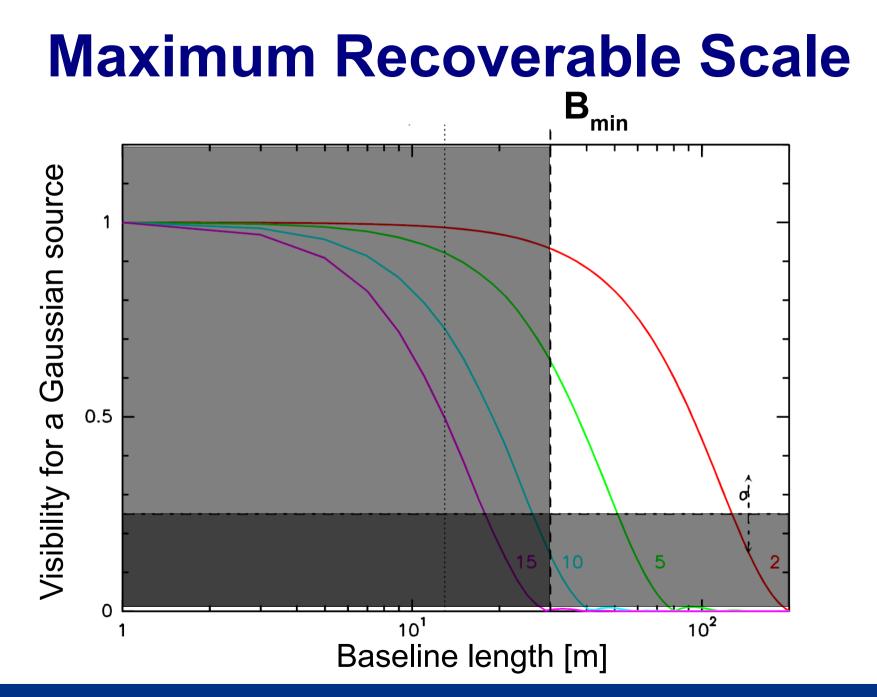

- Assumptions on the morphology of the emission have a great impact on integration time!
- For point sources $F_{ALMA} = F_{SD}$
- For extended sources $F_{ALMA} \propto (\theta_{ALMA})^2$
- Choose your resolution wisely!


Spatial filtering of large scales

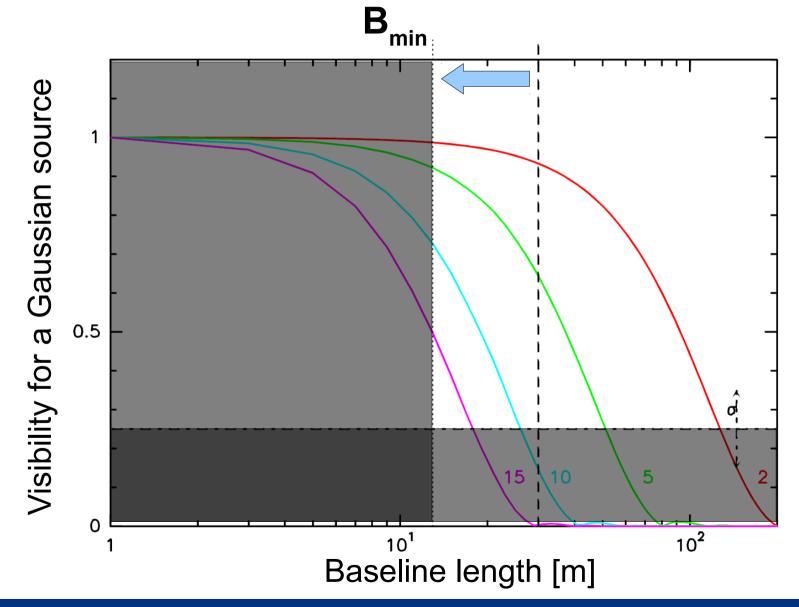
V

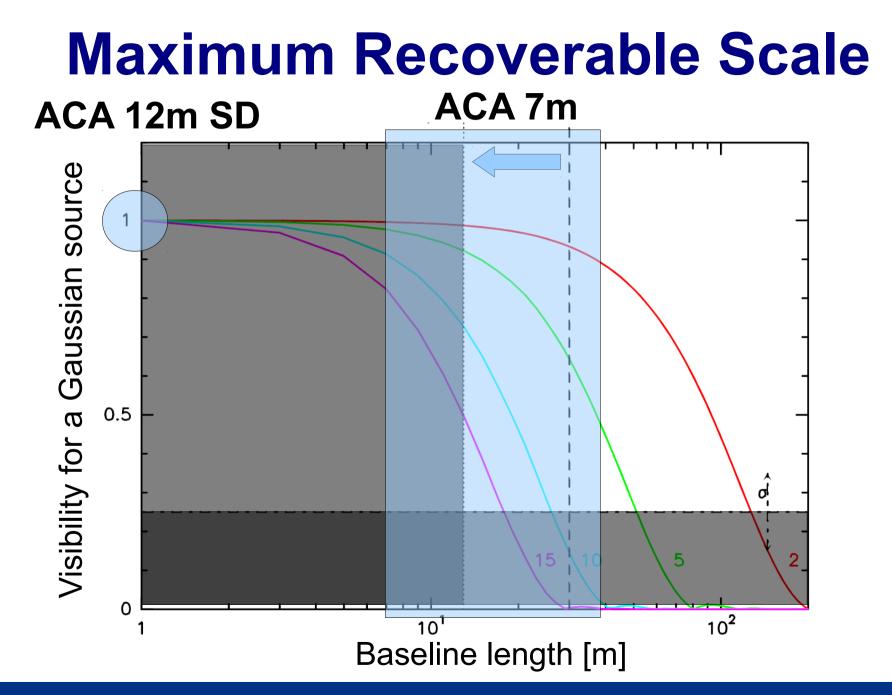






u




ALMA Proposal preparation day - Bologna - 9 April 2015

Maximum Recoverable Scale

Maximum Recoverable Scale

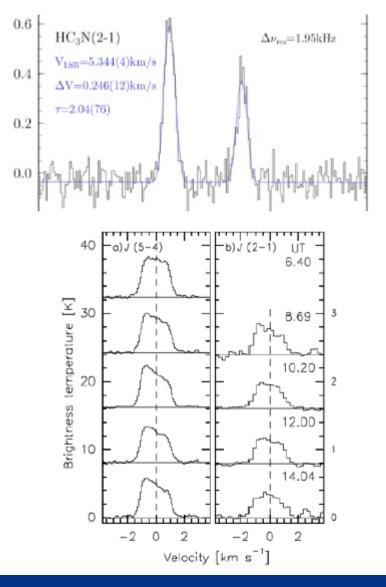
	Band	3	4	6	7	8	9	10
	Frequency (GHz)	100	150	230	345	460	650	870
Configuration								
7-m	θ_{res} (arcsec)	15.0	10.0	6.5	4.3	3.3	2.3	1.7
	θ_{MRS} (arcsec)	42.8	28.6	18.6	12.4	9.3	6.6	4.9
C36-1	θ_{res} (arcsec)	3.4	2.3	1.5	1.0	0.7	0.5	0.4
	θ_{MRS} (arcsec)	25.3	16.9	11.0	7.3	5.5	3.9	2.9
C36-2	θ_{res} (arcsec)	1.8	1.2	0.8	0.5	0.4	0.3	0.2
	θ_{MRS} (arcsec)	25.2	16.8	11.0	7.3	5.5	3.9	2.9
C36-3	θ_{res} (arcsec)	1.2	0.8	0.5	0.4	0.3	0.2	0.1
	θ_{MRS} (arcsec)	25.2	16.8	10.9	7.3	5.5	3.9	2.9
C36-4	θ_{res} (arcsec)	0.7	0.5	0.3	0.2	0.15	0.1	0.0
	θ_{MRS} (arcsec)	9.6	6.4	4.2	2.8	2.1	1.5	1.1
C36-5	θ_{res} (arcsec)	0.5	0.3	0.2	0.14	0.1	0.07	0.0
	θ_{MRS} (arcsec)	7.8	5.2	3.4	2.2	1.7	1.2	0.9
C36-6	θ_{res} (arcsec)	0.3	0.2	0.1	0.08	0.06	0.04	0.0
	θ_{MRS} (arcsec)	4.8	3.2	2.1	1.4	1.0	0.7	0.5
C36-7	θ_{res} (arcsec)	0.1	0.08	0.05	0.034			87.8
	θ_{MRS} (arcsec)	1.5	1.0	0.65	0.43	<u> </u>		-
C36-8	θ_{res} (arcsec)	0.075	0.05	0.03	(<u>_</u>)	(<u></u>)	<u></u>	3 <u>44</u> 10
	θ_{MRS} (arcsec)	1.1	0.7	0.5	-		-	-

In ALMA Technical Handbook : https://almascience.nrao.edu/documents-and-tools

MRS [''] = $37200/(B_{min}[m] v[GHz])$

Maximum recoverable scale

- Spatial filtering due to missing short-spacings of the antennas
- Large scales are filtered out: missing flux!
- MRS [''] = 37200/(Bmin[m] υ[GHz])
- The ACA can be used to fill in short spacings (The OT automatically warns you if needed)
- Choose your resolution carefully, huge implications for observing time requested!


Spectral line sensitivity

- Gaussian profile
 - SN on the peak

 $rms(Jy) = \frac{Area(Jy \cdot kms^{-1})}{FWHM(kms^{-1}) \cdot SN}$

- Undefined profile
 - SN on the area

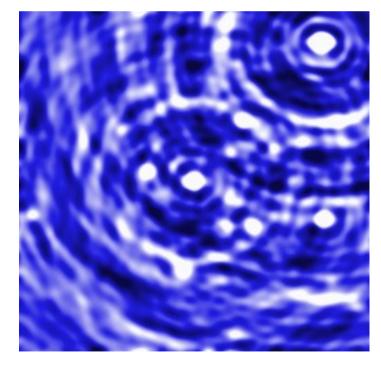
$$rms(Jy) = \frac{Area(Jy \cdot kms^{-1})}{N_{chan}^{1/2} \cdot \Delta v(kms^{-1}) \cdot SN}$$

Spectral resolution (line sampling)

- If channel width < FWHM peak flux independent of channel width
- Choose at least 3 resolution elements per FWHM
- Resolution depends on Science Goal, sensitivity

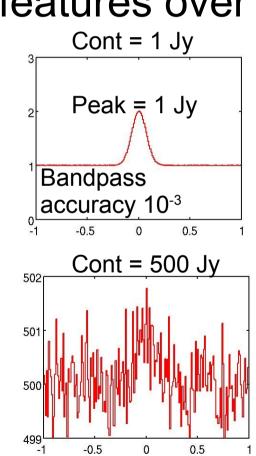
Spectral resolution (sensitivity)

- Sensitivity depends on spectral resolution
- In OT spectral resolution > channel spacing !! • Channel spacing $\leq 2 \times spectral resolution$
- Δυ [Hz] =υ [Hz] Δν [m/s] / c [m/s]

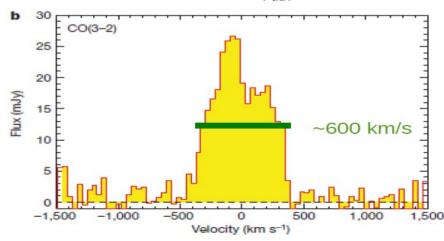

$$(\Delta S) \propto \frac{T_{sys}}{D^2 \left[n_p N (N-1) (\Delta v \Delta t) \right]^{1/2}} W m^{-2} H z^{-1}$$

Spectral resolution

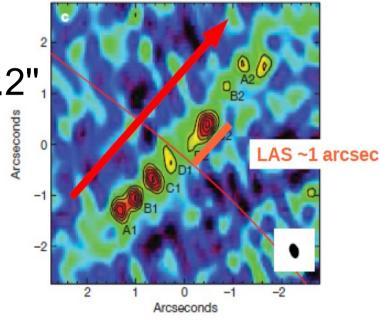
- Sample your line: at least 6 channels / line FWHM
- Sensitivity depends on spectral resolution rms(Jy) $\propto~1/\Delta v^{\mbox{\tiny 1/2}}$
- Choose the right resolution for your Science Goal!


Imaging dynamic range

- Bright sources in the field of view introduce strong sidelobes which affect the rms in the clean image
- IDR= Max continuum flux / Continuum RMS
- ALMA guarantees:
 - . IDR \leq 100 for Bands < 9
 - . IDR \leq 50 for Bands 9 and 10
- Higher IDR must be justified!


Spectral dynamic range

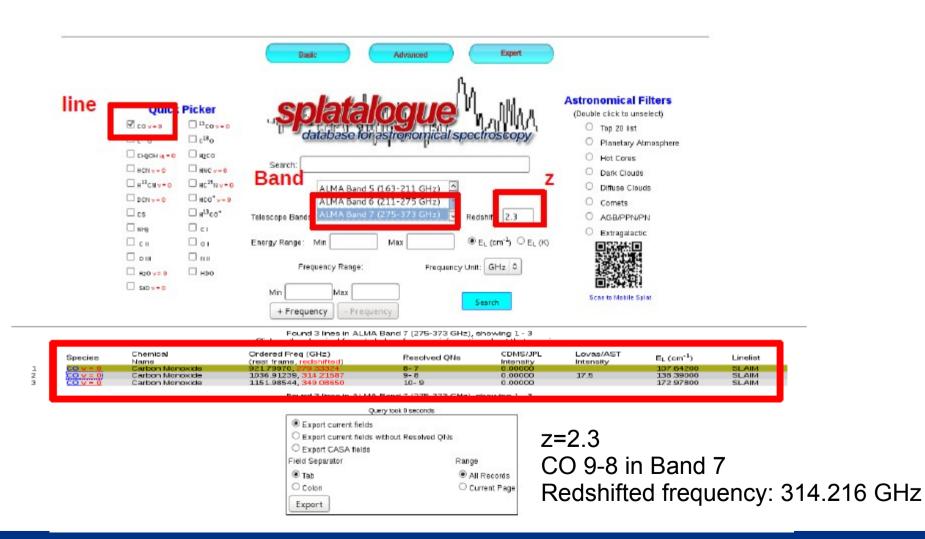
- Uncertainties in bandpass calibration limit the capability of detecting faint spectral features over a strong continuum
- SDR= Continuum Flux / Line RMS
- ALMA guarantees:
 - . SDR \leq 1000 for Bands < 9
 - SDR \leq 500 for Bands 9 and 10
- Higher SDR must be justified!



An example:

- We want:
 - Continuum and CO 9-8 in the Cosmic Eyelash (z=2.3) at **θ**_{ALMA}=0.2"
- We start from :
 - SMA 850µm continuum at θ_{SMA}=0.2"
 - PdBI CO (3-2) at **θ**_{DdBI}=1"

Ext = 5 arcsec


Look for the line at the right z

http://www.cv.nrao.edu/php/splat/

Look for the line at the right z

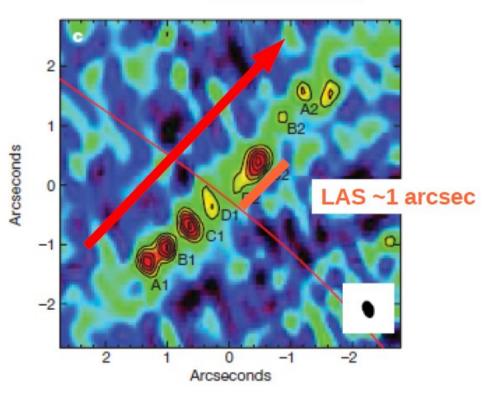
http://www.cv.nrao.edu/php/splat/

Spectral setup

In the OT we select one baseband for CO 9-8 and three basebands for continuum

Editors Spectral Spectral Setup
Visualisation In the table below, it is possible to define up to 16 spectral windows, 4 per baseband as long as the total Fraction per baseband is no more than 1. Each baseband is 2GHz wide and can be separately configured i.e. each spectral window can have a different bandwidth and resolution. Note that for bands 3, 4, 6, 7 and 8, it is not possible to put 3 basebands in one sideband and the fourth one in the other. Left/right click to zoom in/out, grab sliding bar to pan
Note: Moving L01 here is for experimentation only - actual setup determined by the windows
¹ 000 295100 300100 305100 315100 315100 320100 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 00 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Overlays: 🖉 Receiver Bands 🖉 Transmission 🗌 Overlay Lines 🗹 DSB Image Select Lines to Overlay
Water Vapour Column Density: 🖲 Automatic Choice 🔾 Manual Choice [0.913mm (3rd Octile) 🛛 🗸
Viewport: Panito Line Zoomito Band Reset
Spectral Type
Spectral Line Spectral Type Single Continuum Spectral Scan
Polarization products desired 🔾 XX 🖲 DUAL 🔿 FULL
Spectral Setup Errors
Spectral Line
2 -
Baseband-1 Fraction Center Freq Center Freq Spec. Representative
(Rest) (Sky) Transition Bandwidth, Resolution (smoothed) Avg. Window
1(Full) 1032.90000 GHz 313.00000 GHz c tinuum 2000.000 MHz(1796 km/s), 31.250 MHz(29.931 km/s) 1
Select Lines to Observe in Baseband-1 Add Delete

Spectral setup

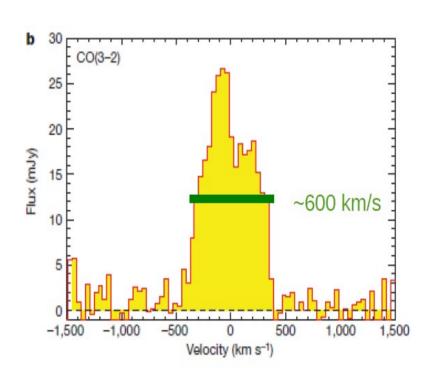

Editors						
Spectral Spa	atial Spectral Setup					
				O opecardi sean		
			Polarizatio	on products desired 🗅 XX 💿 DUAL 🔿 FULL	TDM	
Spectral Setup	Errors				TDM	
Spectral Line						
Developed 2						? -
Baseband-1 Fraction	Center Freq	Center Freq			Spor	Representative
Fraction	(Rest)	(Sky)	Transition	Bandwidth, Resolution (smoothed)	Spec. Avg.	Window
1(Full)	1032.90000 GHz	313.00000 GHz	continuum	2000.000 MHz(1796 km/s), 31.250 MHz(29.931 km/s)	1	○
Select Lines	to Observe in Basebar	nd-1 Add D	elete			
Baseband-2						
1(Full)	1036.91239 GHz	314.21587 GHz	CO v-0 9-8	2000.000 MHz(1789 km/s), 31.250 MHz(29.816 km/s)	1	•
					(0_0)	
Select Lines	to Observe in Basebar	nd-2 Add D	elete		CO(9-8)	
Baseband-3						
1(Full)	993.30000 GHz	301.00000 GHz	continuum	2000.000 MHz(1867 km/s), 31.250 MHz(31.125 km/s)	1	
Select Lines	to Observe in Basebar	nd-3 Add D	elete			
Baseband-4						
1(Full)	996.60000 GHz	302.00000 GHz	continuum	2000.000 MHz(1861 km/s), 31.250 MHz(31.022 km/s)	1	0
Select Lines	to Observe in Basebar	nd-4 Add D	elete			

Spectral setup

Editors	
Spectral Spatial Spectral Setup	
Polarization products de	
- Spectral Setup Errors	
Spectral Line	
Baseband-1 Line name	Channel width 30 km/s
Fraction Center Freq Center Freq	La Boprocontativa
(Rest) (Sky)	andwidth, Re g. Window
1(Full) 1032.90000 GHz 313.00000 GHz contin 2000.000 M	1796 km/s), 31.250 MHztzon
Select Lines to Observe in Baseband-1 Add Delete	
Baseband-2 [(Full) 1036.91239 GHz 314.21587 GHz CO v=0 9-8 2000.000 M	Hz(1789 km/s), 31.250 MHz(29.816 km/s)
Select Lines to Observe in Baseband-2	CO(9-8)
Baseband-3	
1(Full) 993.30000 GHz 3	867 km/s), 31.250 MHz(31.125 km/s)
Line redshifted frequency	
Select Lines to Observe in Baseband-3 Add Delete	
Baseband-4	
1(Full) 996.60000 GHz 302.00000 GHz continuum 2000.000 M	Hz(1861 km/s), 31.250 MHz(31.022 km/s)
Select Lines to Observe in Baseband-4 Add Delete	

Morphology

Ext = 5 arcsec

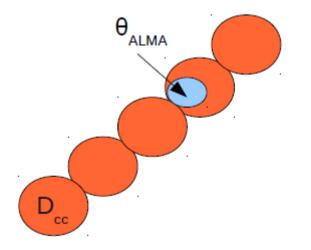


- From SMA continuum:
 - 5 components
 - Total extent 5"
 - FOV = 18" no mosaic
 - you can see it in the OT
 - Maximum angular scale 1"
 - MRS = 2.8" **no ACA**

	Band	3	4	6	7	8	9	10
	Frequency (GHz)	100	150	230	345	460	650	870
Configuration								
7-m	θ_{res} (arcsec)	15.0	10.0	6.5	4.3	3.3	2.3	1.7
	θ_{MRS} (arcsec)	42.8	28.6	18.6	12.4	9.3	6.6	4.9
C36-1	θ_{res} (arcsec)	3.4	2.3	1.5	1.0	0.7	0.5	0.4
	θ_{MRS} (arcsec)	25.3	16.9	11.0	7.3	5.5	3.9	2.9
C36-2	θ_{res} (arcsec)	1.8	1.2	0.8	0.5	0.4	0.3	0.2
	θ_{MRS} (arcsec)	25.2	16.8	11.0	7.3	5.5	3.9	2.9
C36-3	θ_{res} (arcsec)	1.2	0.8	0.5	0.4	0.3	0.2	0.1
	θ_{MRS} (arcsec)	25.2	16.8	10.9	7.3	5.5	3.9	2.9
C36-4	θ_{res} (arcsec)	0.7	0.5	0.3	0.2	0.15	0.1	0.08
	θ_{MRS} (arcsec)	9.6	6.4	4.2	2.8	2.1	1.5	1.1
C36-5	θ_{res} (arcsec)	0.5	0.3	0.2	0.14	0.1	0.07	0.06
	θ_{MRS} (arcsec)	7.8	5.2	3.4	2.2	1.7	1.2	0.9
C36-6	θ_{res} (arcsec)	0.3	0.2	0.1	0.08	0.06	0.04	0.03
	θ_{MRS} (arcsec)	4.8	3.2	2.1	1.4	1.0	0.7	0.5
C36-7	θ_{res} (arcsec)	0.1	0.08	0.05	0.034			100
	θ_{MRS} (arcsec)	1.5	1.0	0.65	0.43	2 <u>-</u> 1		
C36-8	θ_{res} (arcsec)	0.075	0.05	0.03	(<u>1</u>	(<u></u>)	1420 I.	1421
	θ_{MRS} (arcsec)	1.1	0.7	0.5	-	<u></u>	-	-

In ALMA Technical Handbook : https://almascience.nrao.edu/documents-and-tools

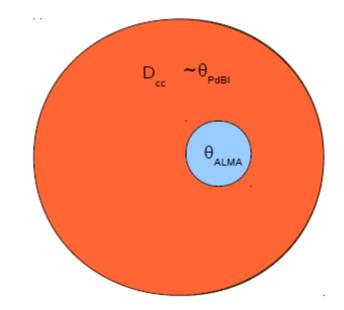
Spectral information


- FWHM = 600 km/s
 - . We need $\Delta v{\leq}100$ km/s
 - Channel spacing 30 km/s OK!
- F[CO(3-2)]=13.8 Jy km/s
- F_{peak}[CO(3-2)]=F[CO(3-2)]/FWHM=23 mJy

in one beam of 1"

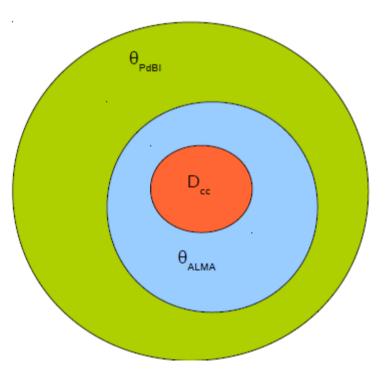
Sensitivity calculation (CO, Case 1)

- For CO 9-8 we assume:
 - Distributed in N=5 components of $D_{cc}=0.8''<\theta_{ALMA}=0.2''$
 - F[CO(9-8)]=F[CO(3-2)]/2.5
 - FWHM[CO(9-8)]=FWHM[CO(3-2)]
 - $F_{peak}[CO(9-8)] = F_{peak}[CO(3-2)]/2.5 = 9.2 \text{ mJy}$
 - •We want a SN=20


rms=(F_{peak} [CO(9-8)]/N) x R_N / SN=0.006 mJy where R_N=(θ_{ALMA} /D_{cc})²

Sensitivity calculation (CO, Case 2)

- For CO 9-8 we assume:
 - The source is unresolved for PdBI but resolved by ALMA with size $D_{cc} = \theta_{PdBI}$
 - F_{peak}[CO(9-8)]=9.2 mJy
 - We want a SN=20


rms=
$$F_{peak}$$
[CO(9-8)] x R₁ / SN=0.02 mJy
where R₁ = (θ_{ALMA}/D_{PdBI})²

Sensitivity calculation (CO, Case 3)

- For CO 9-8 we assume:
 - The source will be unresolved in the ALMA beam
 - F_{peak}[CO(9-8)]=9.2 mJy
 - We want a SN=20

 $rms=F_{peak}[CO(9-8)]/SN=0.46 mJy$

What does the time estimator say?

Common Parameters	i										
Dec			- <mark>0</mark> 1	: <mark>00</mark> :	:00.000						
Polarizatio	n		Du	al					•		
Observing	Frequency		315	5.0		GHz			-		
Bandwidth	per Polarizat	tion	100	0.0		km/s			-		
Water Vap	our		۲	Aut	omatic Choic	e 🔾 I	Mar	nual Choi	ce		
Column D	ensity		0.9	13n	nm (3rd Octile)						
tau/Tsky			tau	0=0	0.139, Tsky=34	1.977					
Tsys			148	3.41	.3 K						
Individual Parameter	s										
	12m Array				7m Array			Total Po	wer	Аггау	<u> </u>
Number of Antennas	36				10			2			
Resolution	0.2	arcs	sec	•	6.543559075	52494	9	19.63067	7722	65748	5
Sensitivity (rms)	6.0	ujy		-	0.00000	ujy	•	0.00000		ujy	-
(equivalent to)	0.00185	к		-	0.00000	к	-	0.00000		к	-
Integration Time	53.53292	d		-	Infinity	d	-	Infinity		d	-

Case 1, 53 Days!

	12m Array		
Number of Antennas	36		
Resolution	0.2	arcsec	•
Sensitivity (rms)	20.0	ujy	-
(equivalent to)	0.00616	к	-
Integration Time	4.81796	d	-

	12m Array		
Number of Antennas	36		
Resolution	0.2	arcsec	•
Sensitivity (rms)	500.0	ujy	-
(equivalent to)	0.15403	к	-
Integration Time	11.10059	min	•


Case 2 , 4 Days !

Case 3, 11 minutes

Sensitivity calculation (Continuum)

- For the continuum
 - The faintest source has F_c=1 mJy
 - For a SN of 6 we need 0.17 mJy rms
 - For Case 3 we have 11 minutes on source
 - The bandwidth to calculate the SN is the aggregated bandwidth of the 3 continuum subbands
 BW=3x2 GHz = 6 GHz

Ext = 5 arcsec

What does the time estimator say?

Common Parameter	5	_								
Dec -(01: <mark>00</mark> :								
Polarization		Dual								
Observing Frequency 3		315.0			GHz					
Bandwidth per Polarization		ion 🧕	6.0 G					-		
Water Va	pour	(🗈 Aut	omatic Choi	ce 🔾	Mar	nual Choi	ce		
Column	Density	0	. <mark>91</mark> 3n	nm (3rd Octile)					
tau/Tsky t		tau0=0.139, Tsky=34.977								
Tsys		1	48.41	3 К						
Individual Paramete	ers									
	12m Array			7m Array			Total Po	wer /	Arra	y
Number of Antenna	s <u>36</u>			10			2			
Resolution	0.2	arcse	C 🔻	6.543559075	55249	49	19.63067	77226	574	85
Sensitivity (rms)	66.16666	ujy	-	0.00000	ujy	-	0.00000		uJy	-
(equivalent to)	0.02038	к	-	0.00000	к	-	0.00000		к	-
Integration Time	11.0	min	-	Infinity	d	-	Infinity		d	-
	In	tegra	ation	Time Unit O	ption	Aut	tomatic			-
		5	Sensi	tivity Unit O	ption	Aut	tomatic			-
Cal	ulate Integrati	on Tir	me	Calcu	late S	ens	itivity			

After 11 minutes on source we get an rms of 0.07 mJy = SNR of 14 !

Dynamic range

- Imaging
 - IDR=Max continuum / Continuum rms = 6 mJy / 0.07 mJy = 85 < 100 OK
- Spectral
 - SDR= Max continuum / line RMS

= 6 mJy / 0.5 mJy = 12 < 1000 OK

Good luck !

