
 

1

Pipeline flagging report II 

Prepared By:  Sandra Burkutean with contributions from the Italian ARC

Date :          06.05.2017



1. The Aim

We were asked to examine the effect of the new visibityOutliers flagging code on the 30 
measurement sets whose manual flagging intervention we previously looked at in our 
Pipeline manual flagging report (30.09.2016). 

The project workflow focussed on the following steps: 
  
• execute the pipeline reduction script for each measurement set using the pipeline version 

CASA 4.7.0 r38335(Pipeline-Cycle4-R2_b) (please note the change in pipeline version to 
the previous report - Pipeline-Cycle3-R4-B) as well as version 1.74 (2017/03/06) of the 
visibilityOutliers.py file

• note down the reasons for manual flagging as reported in the manual flagging templates 
provided

• note the flagging reasons in the *flagtemplate.txt file produced by visibilityOutliers.py
• examine the relevant diagnostic plots directly accessible via the pipeline weblog, thus 

mirroring the first PI experience with the data 
• re-run the pipeline with the new flagtemplate file in cases where the different effects of the 

manual and pipeline (visibilityOutliers.py) flags were not obvious from the weblog alone
   and examine the data in plotms.

2.  Comparison of old and new flagging approaches

In the project focusing on the manual flagging intervention, “Pipeline manual flagging 
report” (30.09.2016), 30 measurement sets were chosen at random from a wider selection of 
pipeline-reduced projects (no selection was made in terms of focusing on particular manual 
flagging applications so as to examine the whole range of possible flagging scenarios). The 
individual ms files that were examined are listed in Appendix A for further reference.
We noted that timegaincal and applycal were the most frequent stages for flagging related to 
outliers in amplitude and, less often, phase (Figure 1). 
     Re-running all 30 projects with the Cycle 4 pipeline as well as the newly developed 
visiblityOutliers python task in analysisUtils, we find that in 24% of the 30 projects all of 
the manually flagged data issues are indeed detected (Fig. 1, bottom). We note however that 
manual flagging focuses on whole-antenna flags whereas the visiblityOutliers.py approach 
is more baseline-flagging-based. In addition, we found that the new Cycle 4 pipeline 
manages to catch some outliers that needed previous manual intervention at the 
msnrmsdeviant-flag_commands.txt stage. Issues related to the gain solution step, bandpass 
artefacts or Tsys issues were not accounted for by the new task. The 76% of projects without 
complete manual flag overlap were mostly due to gainsol outliers,bandpass artifacts or Tsys 
issues not being accounted for or due to baseline as opposed to whole antenna flagging.

Pipeline manual flagging report II

2



 

3

15%

5%
5%

7%

7%

23%

40%

applycal_outlier_amp timegaincal_outlier_amp
applycal_outlier_phase bandpass_bad_rawdata
bad_raw_data flux_calibrator
other ≈

 ≈

 ≈

 ≈

 ≈
 ≈

 ≈

Fig. 1: Comparison of manual flagging and new VisibilityOutliers investigation.  top) Distribution of 
manual flagging stages from the 30 measurement sets using the Cycle-3 pipeline (Pipeline report #1). 
bottom) A comparison study between the manual flagging commands and the joint effect of the 
flagtemplate file produced by visibilityOutliers.py and the Cycle 4 pipeline. 24% of cases have 
complete overlap with the manual flagging commands (partly also due to the fact that the new pipeline 
itself caught several outliers before the visibilityOutliers.py task).The remaining 76% had overlap with 
the manual flags in most cases but missed out on other flagging issues. Gain solution outliers were the 
most frequent (note this number has increased compared to the top graph as the former lists the number 
of flagging reasons in the manual flagging files whereas the bottom graph is calculated per flagging 
occurrence class in the projects). Please note that a few measurement sets entered into several 
categories. The reason for flagging in the “bad_raw_data” category was not obvious in several cases 
judging from the information in the pipeline html reports.

4 proj 
≈12%

14 proj 
≈42%

8 proj ≈24%

2 proj ≈6% 

2 proj 
≈6% 

3 proj 
≈9% 



Flagging reason distribution of the new flagging task:

4

corrected_amp_outlier_too
many_bad_integrations

 corrected_amp_outlier_quack_
single_integration

 corrected_amp_outlier
too_many_bad
baselines

Fig. 2: Reasons for flagging in the visibilityOutliers.py code. top) Distribution of flagging 
reasons for the visibilityOutliers.py code applied to 30 projects. bottom) Intent distribution for all 
three flagging reasons in visibilityOutliers.py in the project runs.



3. A detailed look at residual outliers 

Due to the presence of residual outliers not caught by the new visibilityOutliers.py code (as 
the latter was designed to detect outliers primarily after the applycal step), we give example 
plots below for further cases where additional flagging could be applied. We stress that the 
effect of additional flagging, besides the flags from visibilityOutliers.py, is not quantifiable 
at this stage and was not the purpose of this report.

Bandpass outliers:

Tsys outliers:

5

uid...X71d uid...X2a25

Fig. 3: Bandpass spikes as also reported in the Pipeline manual flagging report (30.09.2016).

uid...X226a uid...bbfb

Fig. 4:  While positive spikes in Tsys on individual antennas will result in this data to be down-
weighted, low Tsys outliers would lead to an opposite effect - the impact of additional flagging 
heuristics cannot be predicted at this stage.



Outliers after the applycal step (9 % in Fig. 1):

6

Fig. 5: These outliers are partly due to gainsol outliers propagating to the applycal stage. The 
effect of more stringent flagging on the imaging stage would need to be examined to reach a 
quantitative conclusion on the necessity for such additional flagging.

uid...X5b49

uid...X6ad

uid...X42f



New Flagging task in action:

Gainsol outliers (example for 42% item):

7

uid...X14e47
uid...X6ad

uid...X1c1b

uid...X1c1b

Fig. 6:  Example cases for successful flagging by the visibilityOutliers flagtemplate - flagged 
points are in red.

uid...Xf11 uid...Xf11



4. Conclusion

We conclude that for 24 % of the projects, the combined effect of the Cycle-4 pipeline and 
the new flagging task commands is sufficient. The rest of the projects have partial flagging 
at the applycal step and/or additional gainsol, bandpass or Tsys outliers. The effect of 
adding additional flagging algorithms for these cases cannot be predicted from this study 
and would need further investigation through final image product comparisons. The 
diagnostic plots from the visibilityOutliers task would benefit from amp vs time graphs as 
well as a README file specifying and explaining the flagging thresholds.  

8

uid...Xdcd

uid...Xbbf

uid...X1019

uid...X947

Fig. 7: Outliers in the gain solutions. The effect of more stringent flagging on the imaging stage 
would need to be examined to reach a quantitative conclusion on the necessity for such flagging.



Appendix A

Here is a list of measurement sets for which the pipeline weblogs and manual 
flagging reasons were examined. 

uid_A002_Xadc734_X850 uid_A002_Xae5b1d_X482a

uid_A002_Xadc734_X2a25 uid_A002_Xaea19c_Xdcd

uid_A002_Xadabcb_X1dcc uid_A002_Xb09eed_X2f8

uid_A002_Xadabcb_X1565 uid_A002_Xaf05a3_X45ea

uid_A002_Xaebbcb_X40b uid_A002_Xaef195_X62bf

uid_A002_Xaecf7b_X1bd uid_A002_Xaf05a3_X1c1b

uid_A002_Xaecf7b_X30da uid_A002_Xaecf7b_X13f7

uid_A002_Xaebbcb_X6ad uid_A002_Xaef195_X603c

uid_A002_Xaea19c_X8c9 uid_A002_Xaf05a3_X4171

uid_A002_Xaee04e_X468a uid_A002_Xb05734_Xf11

uid_A002_Xaef195_X226a uid_A002_Xb00ce7_X4bba

uid_A002_Xb0be8b_Xbbfb uid_A002_Xb00ce7_X4e47

uid_A002_Xaf05a3_X71d0 uid_A002_Xb046c2_X5b49

uid_A002_Xb02e35_X42f uid_A002_Xb046c2_X606

uid_A002_Xb020f7_X1019 uid_A002_Xb046c2_X947

uid_A002_Xadc734_X391c uid_A002_Xb0ebd1_X978d

9


