INTERFEROMETRY and ALMA BASICS

Give a short definition of:

- interferometer
- visibility (main properties, point like and extended sources)
- aperture synthesis
- baseline
- angular resolution
- field of view
- sensitivity
- maximum recoverable scale

Concerning ALMA, provide:

- number of antennas, arrays bands, polarization, and bandwidth
- baseline max, min and MRS, angular and spectral resolution
- search in the website the more extended and compact configurations
- use the sensitivity calculator to estimate the sensitivity to detect one of your source
- use the ALMA science archive to search and download data for one of your target

Optional

For Pictor A:

- search ALMA archive data
- using NED literature and ALMA archival information, estimate the MRS, size, sensitivity to detect the core in all bands

APSYNSIM UV simulator

Ivan's code is available in: https://launchpad.net/apsynsim/trunk/1.2b.

More source and array models here https://www.ira.inaf.it/~liuzzo/UniTO/
To launch it , e.g.: cd APSYNSIM v1.2b POSIX/SCRIPT/ casapy -c APSYNSIM.py

Hands-on

- 1) Model = Point center; Array = 2 antennas
 - set snapshot observation
 - add antennas (up to 6)
 - change the observing time (H: -5 to 5)
- change the wavelength

Notice the differences, e.g. In dirty beam

- 2) Model = 2 points; Array: the 6 antennas just created
 - moving antennas to short distances ~ 300 m: the 2 sources are unresolved
 - with bl > 600 m the two sources are resolved

How the detection of sources changes?

- 3) Model 2Points and gaussian; Array: the same as before
 - start with the extended array
 - move the antennas closer to recover the extended emission
 - alma 3.6 configuration
 - a more compact alma configuration (ACA + alma cycle 1)

When the extended emission starts to be recovered?

In which configuration and what sources are filtered out and resolved?

- 4) Model: Face-on-galaxy; Array: ALMA cycle 3.6
 - diffuse emission filtered out completely
 - the more compact cycle 3.4
 - ACA + alma cycle 3.4

How is the diffuse emission in the ALMA cycle 3.6? and in the other configurations?

5) optional

Model: Radio galaxy; Array: VLA

- different VLA configurations as before
- change the wavelength and observe with alma different configurations.

 Notice the differences.