

ALMA status & Cycle 1 capacities

EUROPEAN ARC

Jan Brand INAF – Istituto di Radioastronomia, Bologna and Italian ALMA Regional Centre

Cycle1 tutorial 6 June 2012: Introduction

Main array: 50 x 12-m 150 m – 16 km

ACA: 12 x 7-m + 4 x 12-m

Presently: 39 antennas

Inauguration: March 2013

Early Science: to allow community to observe with incomplete, but already superior array, on best effort basis:

Cycle 0: Sep. 2011 – Dec. 2012 Cycle 1: Jan. 2013 – Oct. 2013

Time line

Call for Proposals: 31 May 2012
Deadline: 12 July 2012
science & technical assessments
Phase 2: end Oct. – end Dec. 2012
Starts: 1 Jan. 2013
Duration: 10 months (→ 31 Oct. 2013) [9 months for science ops.]
Science time: 800 hrs main array + up to 800 hrs ACA

Configuration

Antennas: 32 x 12-m in main array + 9 x 7-m + 2 x 12-m (TP) in ACA Max. baselines: ca. 160 m to 1 km Six distinct configurations; pseudo-continuous reconfiguration Effective snapshot coverage

Full details in the Call for Proposals on the Science Portal

Frequencies

CYCLE 1

Bands 3, 6, 7, 9 (as for Cycle 0) 3, 1.3, 0.8, 0.45 mm

Correlator

Increased flexibility:

different modes and spectral resolution in different basebands On-line time averaging spectral channels (less data!)

Observing modes

Single-field interferometry Mosaics (max. 150 pointings per proposal) Array + ACA + TP antennas (TP: spectral lines only)

Programs

Standard; ToO; DDT; time critical (> 3 wks. sched. fuzziness)

Angular resolution and max angular scale for the six 12m array configs. In red: including ACA (NB: no ACA allowed for 2 most extended configs.)

Config. baselines (meter)	C32- 15-16	1 66	C32- 15-3(2)4	C32- 21-44	3 43	C32- 21-5	4 58	C32- 26-82	5 20	C32- 43-1(6)91
Band	Res "	Max "	Res "	Max "	Res "	Max "	Res "	Max "	Res "	Max "	Res "	Max "
Band 3 (100 GHz)	3.7	25 <mark>44</mark>	2.0	25 <mark>44</mark>	1.4	17 <mark>44</mark>	1.1	17 <mark>44</mark>	.75	14	.57	8.6
Band 6 (230 GHz)	1.6	11 19	.89	11 19	.61	7.6 19	.48	7.6 19	.33	6.2	.25	3.7
Band 7 (345 GHz)	1.1	7.1 13	.59	7.1 13	.40	5.0 <mark>13</mark>	.32	5.0 <mark>13</mark>	.22	4.1	.16	2.5
Band 9 (675 GHz)	.55	3.6 <mark>6.5</mark>	.30	3.6 <mark>6.5</mark>	.21	2.6 <mark>6.5</mark>	.16	2.6 <mark>6.5</mark>	.11	2.1	.08	1.3

ALMA Early Science

Continuum sensitivity

Band	Frequency (GHz)	Wavelength (mm)	FOV (arcsec)	Cont Sens (mJy/beam)
3	84 - 116	2.6 - 3.6	72 – 52	0.11
6	211 – 275	1.1 - 1.4	29 – 22	0.14
7	275 – 373	0.8 - 1.1	22 – 16	0.24
9	602 - 720	0.4 - 0.5	10 - 8.5	2.2

Source: A Primer for Early Science (Cycle 1)

Cycle 1 capabilities		Source: A Primer for Early Science (Cycle						
Band	Freq	Angular Resol	Max Scale	ΔT _{line}				
	(GHz)	(arcsec)	(arcsec)	(K)				
Most compact								
3	84 - 116	4.4 – 3.2	29 – 21	0.09				
6	211 – 275	1.7 – 1.3	11 – 9	0.11				
7	275 – 373	1.4 - 1.0	8.9 - 6.6	0.18				
9	602 - 720	0.6 – 0.5	4.1 – 3.4	1.8				
Most extended								
3	84 - 116	0.7 – 0.5	10 – 7	3.4				
6	211 – 275	0.27 – 0.21	4.1 – 3.1	4.5				
7	275 – 373	0.21 - 0.15	3.1 – 2.3	7.5				
9	602 – 720	0.09 - 0.08	1.4 - 1.2	80				

Limitations I

- Science Goal (SG) limitations regarding: number of sources per SG number of spectral setups per SG number of SG per proposal (details: Viviana's talk)
- Max. 150 pointings per proposal
- Expect ca. 200 highest priority projects, thus average 12-m array time per proposal ≈ 4 hrs (with large range)
- No Large Programs (max. 100 hrs. per proposal)
- No ACA, TP stand-alone observations. Only one ACA configuration: min / max baselines = 8.9 m / 32.1 m

Limitations II

- TP antennas only for spectral line observations
- Only 3 receivers available at any time (proposals requiring sequential observations in more than 3 bands are not allowed)
- Up to 4 basebands per spectral setup; only one spectral window per baseband
- No spectral sweeps offered
- No solar observations
- No full polarization
- δ_{max} = +40°. Significant shadowing at δ < -60° > +20° (ACA) and δ < -75° > +25° (most compact config. main array)

ES observations – general considerations

 \star Cycle 1 proposals will be considered on their own merit independent of Cycle 0 results

★No guarantee that data & data reduction quality meets standards expected when ALMA fully operational

★ No/limited reduction pipeline available. Experience in radio or mm-interferometry will be advantage when working with ES data products. Or visit ARC-node for help.

★ Estimated max fraction of time suitable for obs. in each band: Band: 3 (100%) 6 (70%) 7 (40%) 9 (10%)

★ Proprietary period 12 months

★ No transfer of projects from Cycle 1 to Cycle 2 Full details in the ALMA Proposers Guide on the Science Portal

Science categories

- Cosmology and the high redshift universe
- Galaxies and galactic nuclei

Cycle 0 stats for

- ISM, star formation and astrochemistry
- Circumstellar disks, exoplanets and solar system
- Stellar evolution and the Sun (nb: no Sun in Cycle1)

Highest-priority proposals: Science category distribution

How to propose for ALMA observations

- Must use software package ALMA Observing Tool (OT)
- Log on to Science Portal for all necessary documentation: (<u>http://almascience.org</u>)

ALMA Proposers Guide A Primer for Early Science OT Phase I Quickstart Guide; OT User Manual ALMA Technical Handbook ALMA Sensitivity Calculator CASA Simulator; ALMA Observation Support Tool (OST)

And: this tutorial!

Today's program

- 10:20 11:00 The ALMA Observing Tool (Casasola)
- 11:10 11:30 Practical examples (Mignano, Boissier)
- 11:40 12:00 ALMA Simulations (Paladino)
- 12:10 12:30 Discussion and Questions

Helpdesk: submit a ticket or consult the Knowledgebase/FAQ

Also to apply for face-to-face help at the Italian ARC node