

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Maser science with mm-VLBI

Francisco Colomer Observatorio Astronómico Nacional (OAN/IGN) Spain

with contributions from V. Bujarrabal, C. Goddi, and E. Humphreys

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Contents

- Introduction
- Masers in stars and star forming regions
- Masers in galaxies
- Masers as tools
- Summary

References:

- -*"Future mmVLBI Research with ALMA: A European vision"*, by Tilanus et al. (2014, see http://arxiv.org/abs/1406.4650)
- -*"High-angular-resolution and high-sensitivity science enabled by beamformed ALMA"*, by Fish et al. (2013, see http://arxiv.org/abs/1309.3519)

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Masers at ALMA frequencies

SiO (43, 86, 129, 210 GHz)
H₂O (183, 321, 325, 439, 471 GHz)
HCN (89 GHz)
CH₃OH (> 44 GHz)

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

ALMA in a mm-VLBI array

HAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Instruments for masers at ALMA frequencies

- SiO (43, 86, 129, 210 GHz)
- H₂O (183, 321, 325, 439, 471 GHz)
- HCN (89 GHz)

• 43/86 GHz: EVN, VLBA, VERA, GMVA, KVN

- 129 GHz: KVN, IRAM
- 215 GHz: IRAM, CARMA, SPT
- 183, 321, 325 GHz: IRAM, CSO, SMA
- 439, 471 GHz: CSO, SMA

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

uv coverage (δ =10°)

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

uv coverage (δ =-30°)

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Masers in stars: evolved stars

Schematic view of an AGB star

GOBIERNO DE ESPAÑA MINISTERIO DE FOMENTO

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Time variability

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Kinematics

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS

www.fomento.e

Polarization

Magnetic Mapping of the Near Stellar Environment

 Highly polarized (>20%) high-frequency SiO masers are good probes of B-field morphology within a few stellar radii

• With mmVLBI including phased ALMA it will be possible to map in detail the B-field on the smallest scales

• Via monitoring, it could be possible to trace magnetic ejections from evolved stars and determine their magnetic activity

• For C-rich stars, the 89 GHz HCN maser could be used

Vlemmings, van Langevelde & Diamond (2005) Francisco Colomer @ "mm-VLBI with ALMA". Bologna, January 22 2015.

Models of SiO maser emission

- Ring structure:
 - Explained by tangential amplification (eg. Bujarrabal & Nguyen-Q-Rieu 1981)
 - Peculiar v=2 J=2-1 SiO behaviour

Time variability:

Correlation with IR pumping from the central star (eg. Pardo et al. 2004)

Clumpiness:

- Humphreys et al. (1996) MNRAS 282, 1359
- Doel et al. (1995) A&A 302, 797

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

The case of the weak SiO v=2 J=2-1

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Line overlap effects

The alignment problem

It is essential to properly align the images of different maser transitions. Methods:

- 1. Calculate centroid of emission; align clumps of same velocity.
- 2. Follow the interferometric phase from one maser line to the other.
- 3. Frequency-phase transfer.
- 4. Absolute astrometry by phase referencing to quasars.

And it is important to relate these positions to the actual position of the central star!

ALMA in a mm-VLBI array for SiO masers in stars

- Study of several spectral lines simultaneously
- Alignment of SiO masers positions (by ALMA subarraying)
- Missing flux problem (ALMA sensitivity)
- Detection of stellar photosphere.
- Better uv coverage, and access to the Southern hemisphere.

ORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

The missing flux problem

Yi et al. (2005)

Large difference between SiO masers total flux (solid line) and crosscorrelated flux (dashed line).

Is there an extended emission which is resolved by VLBI?Many small and weak spots?

Extended weak emission?

ALMA-VLBI may give the answer !

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Imaging the photosphere!

Observations of water maser emission in late-type stars

(see next talk by Anita Richards)

WWW.fomento.es

Other masers: HCN (in C-rich stars)

- Detected in just a few sources (< 10)
- Ground state (000) J=1–0 (@ 89 GHz) masers of HCN & H¹³CN
- Vibrationally excited masers of HCN: (02⁰0) J=1-0 (@ 89 GHz) (01¹c0) J=2-1 (@ 178 GHz) (04⁰0) J=9-8 (@ 805 GHz)
 No VLBI maps yet.

Refs: Izumiura et al. (1985), Guilloteau et al. (1987), Lucas & Cernicharo (1989), Schilke & Menten (2003), Smith et al (2014), and references therein.

Why submm molecular masers in SFRs?

- Where different maser transitions trace the same gas, we can place new constraints on radiative transfer models to determine temperature and density maps of the circumstellar gas with high spatial resolution
 - => e.g. the cm/mm H₂O line ratios can be valuable diagnostics for shocked material in protostellar outflows.
- Where **maser lines probe different portions of circumstellar gas** and/or different scales, we can map out more of source structures, dynamics, and physical conditions than just with cm lines.
- Submm masers could be particularly important probes of regions in which longer λ maser emission is subject to obscuration (e.g., free-free or synchrotron opacity).
- To understand the **physics** of the excitation of submm water maser transitions.
- For calibration and commissioning purposes of new submm arrays, as the maser sources with bright narrowband point emission provide excellent targets for assessment of the delays, pointing, baselines as well as strong phase calibrators

- SiO emission at R=15-70 AU
- No SiO emission in the disk midplane

Unveiling the powering source of Orion BN/KL

mm-VLBI can :

- Establish maser nature of high-J lines
- Constrain radiative transfer models to make T/dens. maps
- Probe closer gas to YSO, i.e. R<15 AU

Our best chance to resolve the root of a disk/jet system in a YSO !!

GOBIERNO DE ESPAÑA DE FOMENTO

Gas dynamics and physical conditions in massive protostellar outflows (183, 321, 325, 690 GHz H₂O masers)

- The 325 GHz H₂O masers trace same bipolar outflow as the 22 GHz but <u>a more collimated</u> flow
- Strong correspondence of 22 and 325 GHz emission along the outflow
- Can mmVLBI probe the "primary wind" along jet axis rather than entrained material ?

mmVLBI can measure proper motions of masers < 0.1 mas/yr (< 2 km/s at d > 5 kpc) over 1 month

NGC 3079: 183 GHz Maser

Megamasers for testing the Unified Model in AGN

• Extragalactic 22 GHz water masers are found in a number of environments including AGN and starburst galaxies

 Masers currently provide the only way to map the structure of circumnuclear accretion disks within a parsec of AGN supermassive black holes

 In local AGN (D < 30 pc), mmVLBI maser observations can be used to test the AGN unified model (e.g. is there a need for a torus) and AGN central engine physics

Hagiwara et al. (2013)

MOS DISTANCIAS. ACERCAMOS PERSONAS.

Maser cosmology and determination of H₀

 For distant AGN (> 50 Mpc), water maser geometric distances can yield a high accuracy H₀ and constrain Dark Energy

• Outstanding issues remain using 22 GHz water masers. Portions of the maser disks may be obscured by ionized material at 22 GHz

 Need stronger/unobscured masers for cosmology using more distant galaxies

• With some redshift, arguably more promising masers can become shifted to lines at 183, 321 GHz and 325 GHz bands

Masers as tools: measuring distances

ALMA in a VLBI array (I)

- High resolution maps of maser emission provide detailed information on processes occurring in SFRs and circumstellar envelopes of AGB stars.
- Multi-transition simultaneous and aligned observations of these masers are needed to better constrain the models.
- VLBI maps show typically 10 90% of total flux; missing flux may come from many small weak spots, or extended haloes around or in between strong spots; ALMA baselines may detect and distinguish both scenarios: a new class of maser sources.
- ALMA provides baselines to south hemisphere sources (e.g. Magellan Clouds).
- ALMA+VLBI array will detect features in the photosphere of stars.

CORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

ALMA in a VLBI array (II)

Advantages of participation of phased-ALMA in a mm-VLBI array for masers:

- Much enhanced sensitivity (missing flux)
- Sub-arraying (for map alignment, multifrequency)
- Access to southern hemisphere sources

ACORTAMOS DISTANCIAS. ACERCAMOS PERSONAS. www.fomento.es

Paco Colomer f.colomer@oan.es