European efforts towards the EHT

Ciriaco GODDI

BlackHoleCam Project Scientist

VLBI Tradition in Europe

λ-3mm <u>GMVA</u>, MPIfR (Bonn)

ASTRONOMY AND ASTROPHYSICS

First detection of Sgr A* at 1.4mm with <u>a single baseline</u> IRAM PV-PdBI

Krichbaum et al. 1998

Outline

- mmVLBI Workshop at ESO (2012)
- European White Paper on mmVLBI (2014)
- ERC Synergy Grant to BlackHoleCam (BHC) (2014)

I will not review:

- EU contributions to the ALMA phasing project. See V. Fish talk
- λ 1mm-VLBI at APEX, PV, and PdBI. See F. Gueth talk
- GMVA operations, plans for joint ALMA-GMVA observations.

See E. Ros talk

Workshop at ESO

"mm-wave VLBI with ALMA and Radio Telescopes around the World"
Garching, June 2012

- > 61 scientists from the EU and 5 from outside
- From black holes to star formation
- Strong EU science interest in a mm-VLBI facility

Falcke et al. 2012

European White Paper on mmVLBI

Future mmVLBI Research with ALMA:

Editorial Board

A European vision

R.P.J. Tilanus^{23,2}, T.P. Krichbaum⁴⁴, J.A. Zensus^{44,51}, A. Baudry⁷, M. Bremer²⁹, H. Falcke^{23,44}, G. Giovannini^{26,14}, R. Laing¹⁵, H. J. van Langevelde^{39,2}, W. Vlemmings⁴⁸

Contributing authors:

Tilanus et al. 2014, arxiv:1406.4650

European White Paper on mmVLBI

Future mmVLBI Research with ALMA: A European vision

R.P.J. Tilanus^{23,2}, T.P. Krichbaum⁴⁴, J.A. Zensus^{44,51}, A. Baudry⁷, M. Bremer²⁹, H. Falcke^{23,44}, G. Giovannini^{26,14}, R. Laing¹⁵, H. J. van Langevelde^{39,2}, W. Vlemmings⁴⁸

Contributing authors:

Z. Abraham⁶⁴, J. Afonso¹⁰, I. Agudo³⁹, A. Alberdi³⁵, J. Alcolea⁴⁷, D. Altamirano³, S. Asadi¹³, K. Assaf³⁸, P. Augusto¹⁰, A-K. Baczko³⁰, M. Boeck⁴⁴, T. Boller⁴³, M. Bondi²⁶, F. Boone⁵²,

- outlines a possible roadmap toward a future global mm-VLBI collaboration
- summarizes the science interests of the European users
 - ♦ NOT a restatement of the science case for the APP (Fish et al. 2013)

European White Paper on mmVLBI

About 50 different projects were submitted from 160 researchers

- Imaging the event horizon of the BH at the center of the Galaxy.
- Studying the origin of AGN jets and jet formation.
 See Gomez, Kadler, Krichbaum talks
- Testing General Relativity (GR) and/or searching for alternative theories.
 See Boller's poster
- Cosmological evolution of galaxies and Black Holes, AGN feedback.
- Masers in the Milky Way in evolved stars and star-forming regions.
 See Colomer's and Richards' Talks, and Humphreys' poster
- Extragalactic emission lines and astro-chemistry.
- Redshifted absorption lines in distant galaxies and study of their ISM.
- Pulsars, neutron stars, and X-ray binaries. See Kramer's talk
- Testing cosmology and fundamental physical constants.

See V. Fish talk

ERC Synergy Grant BlackHoleCam Project

European Research Council (ERC) awarded a "Synergy Grant" for 14 M€ for 6 years

European partners

BHC Work Plan

mmVLBI

•BH Image:

- BH shadow images (EHT)
- Pulsar timing (phased-ALMA)
- Stellar orbits (GRAVITY)
- Numerical Simulations (Theory)

Cross-correlation of the different methods and interpretation of observations (Theory)

Simulations •Predict shape: GR vs. non-GR. Phased-arrays Pulsar search: shape and size. mass and spin. Test theories of BHs and gravity

Ultimate goal:

Measurements of mass/spin of Sgr A*, spacetime around a BH, fundamental test of the validity of GR

The Shadow of a Black Hole

Theory

- ✓ explore physical conditions of flow near Sgr A*
 - GRMHD Simulations of accretion flows onto a BH

- ✓ simulate emission from accretion flows on Sgr A*
 - Radiative transfer models (ray tracing)

✓ explore predictions of alternative theories of gravity

✓ production of observational predictions using detector simulations

GRMHD simulations of BHs

General relativistic magnetohydrodynamic (GRMHD) codes with particle acceleration

Nijmegen Group

Lead: Moscibrodzka

- HARM(3D)
 (Noble et al. 2007)
- radiative-transfer + ray-tracing
- astrophysical community investigating accretion flows around BHs

Frankfurt Group

Lead: Rezzolla

- Whisky (Rezzolla et al. 2010)
- radiative-transfer + ray-tracing
- GW community driven by fundamental-physics goals
- + BH perturbation theory, alternative theories of gravity

Use tools in both theoretical physics and astrophysics!

GRMHD simulations of BHs with HARM-3D

Single snapshot when varying:

Moscibrodzka et al.

 $T_{\rm e}$ in disk and jet (left to right) & viewing angle (90° – 30° top to bottom)

Measuring masses with pulsars

- Binary pulsars test predictions of theories of gravity.
- We can gauge and weigh companion, e.g.:
 - Hulse-Taylor binary (Hulse & Taylor 197**5)**
 - Double Pulsar (Lyne et al. 2004)
 Pulsar A = 1.3381±0.0007 Solar Mass,
 Pulsar B = 1.2489±0.0007 Solar Mass.

- Also possible with BHs!
- Ability to measure BH properties scales with mass.
- For few-million solar mass BH:

Mass with precision of 1:1,000,000 Spin with precision of 1:1,000.

Courtesy of M. Kramer

Dark Mass in the Galactic Center

- Stellar proper motions have revealed a dark mass in the Galactic Center of 4 Million solar masses within the size of the solar system.
- The center of gravity coincides with Sgr A* within $215 R_s$ (15 AU).
- More stars could be at even tighter orbits, allowing one to measure more accurately mass and even spin.

Gillessen 2013, priv. comm.

GRAVITY @ ESO VLTI

Milestones:

- Final design in 2011/12
- Installation at the telescope in 2015

Fringe Tracking:

- UTs: K~10 mag
- ATs: K~7 mag

Astrometry:

• few 10 μas in 5 minutes

Interferometric Imaging:

- UTs: K~16, ATs: K~13 in 100s
- SNR(V) = 10 for visibility
- $\sigma(\phi)$ = 0.1 rad for referenced phase

Eisenhauer et al. 2011

BHC Milestones

- Kick-off Meeting (8-9 Jan 2015)
- Assessing Work-Packages (WPs)
- Setting up Working Groups (WGs)
- Equipment for March 2015 EHT Campaign see Tilanus Talk

Setting up Working Groups

- 1. Theory (and Astrophysics)
- 2. Data simulation
- 3. Data reduction pipeline and image analysis
- 4. Pulsars (+ ALMA phasing and data recording)
- 5. Data acquisition, eVLBI & correlation
- Turn-key operations, dynamic scheduling, and remote control

WPI.Theory work plan

Theory will cover three distinct but interconnected aspects:

- (i) modelling of the dynamics and emission from astrophysical plasmas (jets and accretion disks) around BHs
 - Extending now 3D GRMHD simulations (Nijmegen)
 - New HC computer cluster and expanded storage have been installed at RU
 - Started Oct 1
 - Lead: Monika Moscibrodzka (+Nijmegen theory group)
- (ii) modelling of the signatures that different theories of gravity make on such dynamics and emission
 - Mathematical framework for description of shadow in generic theories of gravity (Frankfurt)
 - Started Oct 1
 - Lead: Luciano Rezzolla (+Frankfurt theory group)
- (iii) production of observational predictions using detector simulations
 - build a large database synthetic images of the BH shadow

WP2. Software to Simulate VLBI Observations

Pipeline created by the Nijmegen group:

- extracts observables from GRMHD images: visibility amplitudes and phases, closure phases
- included in the pipeline ISM scattering effects, atm. effects, instrumental noise for arbitrary VLBI configurations
 People: Moscibrodzka, C. Brinkerink, R. Fraga-Encinas

Work in progress on **new software**:

- package of choice: MeqTrees, Maps,...?
- include polarization effects, calibration uncertainty,....
- develop radiative transfer model for polarized light (Radboud PhD T. Bronzwaer)

Radboud Universiteit Nijmegen 🗑

WP3. Software data reduction/analysis pipeline

- ✓ Produce science quality images and non-imaging data
- ✓ Comparison among existing packages
 - > AIPS, HOPS, Difmap, CASA, LOFAR software, PIMA, Miriad
- ✓ Package of choice: <u>CASA</u>
 - Fringe finder algorithm
 - VLBI gain calibration (Tsys, gain curves)
 - Sparse imaging algorithm?
 - Started Oct 1.
 - Lead: Ilse van Bemmel (+ JIVE software experts)

Please see I. van Bemmel's poster!

WP4. Pulsar search with phased-ALMA

- Experience in using phased-up interferometers for the observations of pulsars (LEAP project).
- Similar data acquisition needs for the VLBI and pulsar communities (high-bandwidth digital equipment and storage solutions).
- Design and build a unified recorder system that can serve both communities at mm-wavelengths.
- Standard pipeline searching the data for pulsars + timing analysis
 - Start date: TBD
 - Lead: Gregory Desvignes (+MPIfR Pulsar group)

Max-Planck-Institut für Radioastronomie

Data acquisition, Operations

- WP5. Near real-time software correlator and eVLBI interface
 - (Automatically) send data-snippets, e.g. on calibrators, to correlator for near real-time correlations
 - Implements ability to verify a functional array prior and during observations
 - Started Oct 1: port eVLBI capability from Mark5 to Mark6
 - Lead: Arpad Szomoru (+JIVE specialists)

- WP.6 Software package for remote control and dynamical scheduling/alerting
 - turn-key operations to interact smoothly with ALMA
 - Integrate mmVLBI with standard observing modes and allow for rapid switching
 - Start date: TBD
 - MPIfR Pulsar Group

JOINT INSTITUTE FOR VLBI IN EUROPE

Installation of next-gen. mmVLBI units for EHT

- 64 Gbps (16 GHz) downconverters backends & recorders at the telescopes
- IRAM NOEMA beamformer (2017)
- March 2015 Campaign
- Lead: Remo Tilanus

Block down converter for the LMT just shipped to Haystack SRON Groningen Team

- Built by SRON
- Filters by MPIfR
- Design by Haystack

See R. Tilanus talk!

BHC Kickoff Meeting

8-9th Jan 2015, Bonn

BlackHoleCam Kick-off Meeting Programme

January 8-9 2015, room 0.02, MPIfR, Bonn

Thursday 8th

12:00 - 13:00 Lunch

13:00 - 13:05 Welcome

13:05 - 13:15 Michael Kramer (MPIfR) - Introduction to BHC

13:15 - 13:30 Michael Kramer (MPIfR) - Pulsars

13:30 - 13:45 Luciano Rezzolla (Frankfurt) - Theory

13:45 - 14:00 Remo Tilanus (Leiden/Nijmegen) - Black Holes

14:00 - 14:15 Huib J. van Langevelde / Ilse van Bemmel (JIVE) - Software@JIVE

14:15 - 14:30 Robert Laing (ESO) - VLBI@ALMA

14:30 - 14:45 Frank Eisenhauer (MPE) - VLTI/GRAVITY

14:45 - 15:00 Eduardo Ros (MPIfR) - mm-VLBI at the MPIfR: the GMVA and beyond

15:00 - 15:30 Coffee Break

15:30 - 15:45 Remo Tilanus (Leiden/Nijmegen) - EHT Development,

2015 Spring Campaign

Black

15:45 - 15:55 Monika Moscibrodzka (Nijmegen) - Theory Overview

15:55 - 16:05 Ziri Younsi (Frankfurt) - General Relativistic Radiative Transfer

in Black Holes

- 40 scientists from EU
- Science talks
- WP and management discussion

Conclusions and Outlook

- Broad scientific interest and ample support in EU for the development of an open-user global mm-VLBI facility.
- Various EU Institutions are contributing to the EHT project (MPIfR, IRAM, ESO, ERC,...) with resources, manpower, equipment, software, etc.
- Theoretical work and VLBI/Pulsar data analysis in BHC will help us interpret the EHT data (e.g. GR vs. non-GR)

Let's all work together to make it happen!

BACKUP

Finding GC pulsars with ALMA

- Until recently not a single pulsar had been found in the GC
- Is scattering too high? Maybe use ALMA for pulsars....

 (Assuming 50 12-m dishes and compare it with the best searches)

Summary slide BEFORE WP?

Putting things together: cross-validation of theory and observations

- Investigating constraints from combining pulsar, GRAVITY, and VLBI observations with theoretical predictions
- ➤ Comparison of the data with model predictions and analysis within our theoretical frame work

Management Structure

Theory and Observations

 Theoretically well studied: sophisticated numerical solution of Einstein equations + plasma dynamics.

 Theory more advanced than observations – are BHs just a theorist's toy?

BHs are simplest objects
 they are described by just two numbers:

mass & spin!

Theory and Observations

- Gravity is well studied: Gravitational Wave (GW)
 community has developed sophisticated numerical
 solutions of Einstein equations + plasma dynamics.
- Theory is more advanced than observations – GWs will likely be measured, but Sgr A* may be the first real test of these tools!

The Frankfurt theory team

- Luciano Rezzolla (Lead)
- Roman Konoplya
- Yosuke Mizuno
- Oliver Porth
- Ziri Younsi
- Alexander Zhidenko

MHD simulations, jet launching, PIC

GR radiative transfer, ray tracing

BH perturbation theory, alternative theories

The Nijmegen theory team

- Heino Falcke (PI)
- Monika Moscibrodzka (Lead)
- Elmar Koerding (Ass. Prof)
- Thomas Bronzwaer (PhD)
- Christiaan Brinkerink (PhD)
- Raquel Fraga-Encinas (PhD)

BH physics, GRMHD simulations BH, compact objects physics Radiative transfer

.

More details on simulations

- GRMHD Simulations of accretion flows onto a BH
 - Ideal-MHD equations
 - Zoo of models with various BH spins, B-field topologies

Radiative transfer models

- ray tracing schemes (follow light rays in curves space-time and solve RT eq. along photons geodesics trajectories)
- all geometrical effects: light bending, Doppler boosts, light crossing time effect etc.
- emission processes currently included: synchrotron + synchrotron selfabsorption (mixture of thermal and nonthermal electrons: Maxwell + power-law DF), inverse-Compton scatterings (Klein-Nishina cross section), bremsstrahlung (optionally)
- models can be differentiated by observations of BH systems at any wavelength (radio-X-ray, spectra and images)

Perform numerical simulations

- ouse tools in theoretical physics and astrophysics.
- Detector simulation (simulated VLBI images)

GRMHD + particle codes

- In addition GRMHD codes are now well developed in astrophysics; link with observations is still weak
- Compare with GW tools
- Develop tools to couple GRMHD codes to PIC code to model particle acceleration
- End result matched with raytracing codes for realistic image synthesis for various physical conditions and gravity theories.

The actual work plan

- WP 2.1: 3D GRMHD simulations of accretion/jets systems with ray tracing, radiation transport, and particle acceleration, predicting theoretical images, spectra, and variability
- D2.1.a: Comparative study of GRMHD codes [100,0,0].
- D2.1.b: Systematic investigation of BH model parameter space via full 3D GRMHD codes [50,50,0].
- **D2.1.c:** Extending 3D GRMHD with particle acceleration and radiation codes (semi-analytic and PIC) for comparison with observations [33,33,33].

WP 2.2: Investigation of alternative/expanded theories of gravity

- D2.2.a: Imaging code for emission in arbitrary theories of gravity [0,60,40].
- D2.2.b: Catalogue of BH images and emission properties in alternative theories of gravity [0,40,60].
- **D2.2.c:** Framework for quantitative measurements of deviations from BH solutions in generic theories of gravity [0,20,80].
- WP 2.3: Putting things together: cross-validation of theory and observations.
- **D2.3.a:** Investigating constraints from combining pulsar, GRAVITY, and VLBI observations with theoretical predictions [33,33,33].

WP 2.4: Outreach, education, and science communication

D2.4.a: Production of (3D) animations, popular science articles, and materials for textbooks, webpages, and

Dark Mass in the Galactic Center

- Stellar proper motions have revealed a dark mass in the Galactic Center of 4 Million solar masses within the size of the solar system.
- The center of gravity coincides with Sgr A* within 215 R_s (15 AU).
- More stars could be at even tighter orbits, allowing one to measure mass and even spin.

see also: Rubilar & Eckart (2001)

Theory work plan

- build a large database synthetic image of the shadow
- derive a (most) general parametric description of compact objects w/ and w/o horizon (not just Kerr BHs)
- parameters: piven a theory of gravity (i.e. mass, spin, ...? of BH), we will explore as much as possible the space of
- flow geometries (spherical/disk)
- magnetic field strength and topology
- emission processes (disk? jet? flares?)
- determine how features obtained above change with different theories of gravity

Data Analysis and Simulation

- **D1.3.a**: automated VLBI software pipeline: 2 FTE Nijmegen, 3 FTE JIVE [20,40,40].
- D1.3.b: mmVLBI simulation tool: 2 FTE
 Nijmegen (Sec. 2.1.2) [50,50,0].
- D1.3.c: Pulsar search analysis pipeline for ALMA: 4 FTE Bonn (Sec. 2.1.3) [40,40,20].
- D1.3.d: Pulsar timing analysis pipeline working for ALMA:

Simulations

- Test null-hypothesis, new software
- Test sensitivity, atmosphere, image quality,...
- Package of choice: MeqTrees
 - Existing module for ionospheric phase errors
 - Existing EHT simulations
- Other institutes? Manpower? Separate WP?

JIVE (& the EVN)

- EVN: European VLBI Network
 - Consortium of (European) Telescopes (>20 antennas
 - Covering range of frequencies from 18cm
 - Operational approximately 60 days/year
- JIVE: Joint Institute for VLBI in Europe
 - Data acquisition, correlation and processing
 - User support
 - User interfaces (Data product, Archive)
 - R&D to improve capabilities, Promote advance of V

Simulations Nijmegen

Moscibrodska et al.

Courtesy: Roger Deane

Contribution to the EHT

- Science / Theory?
- Software
- Upgrades of EHT stations (equipment and manpower)

SHOULD WE HAVE THIS SLIDE? IF SO, WHERE SHOULD IT GO?

Effect of scatter broadening

Workpackages

