### Molecular clouds and star formation

# Jan Brand INAF – Istituto di Radioastronomia Bologna

### **Overview of this lecture:**

#### The galactic interstellar medium (ISM):

constituents and their co-existence; large-scale distribution

#### Molecular clouds

properties; chemistry; mass and temperature

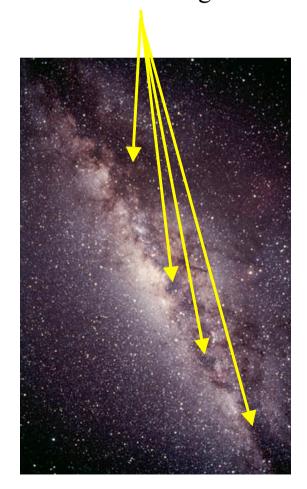
#### **Kinematics**

rotation curve, kinematic distances

#### Star formation

young stellar objects (YSOs); IMF manifestations (interaction with surroundings)

#### Star formation: high-mass


intro only. Is main topic of next lecture, by Cesaroni

# THE PHASES OF THE INTERSTELLAR MEDIUM

### Not just stars...

ISM: 90% H, 9% He, 1% "rest"

Dust mixed with gas



Abundances: for every 10<sup>6</sup> H atoms, there are 250 C, 500 O, 80 N atoms ~solar (≡ cosmic). Other elements: IS abundance <<cosmic: depletion (material locked up in dust grains)

#### Characterize ISM acc. to condition of H:

HI:  $M \sim 2 \times 10^9 M_{\odot}$ 

 $H_2$ :  $M \sim M(HI)$ 

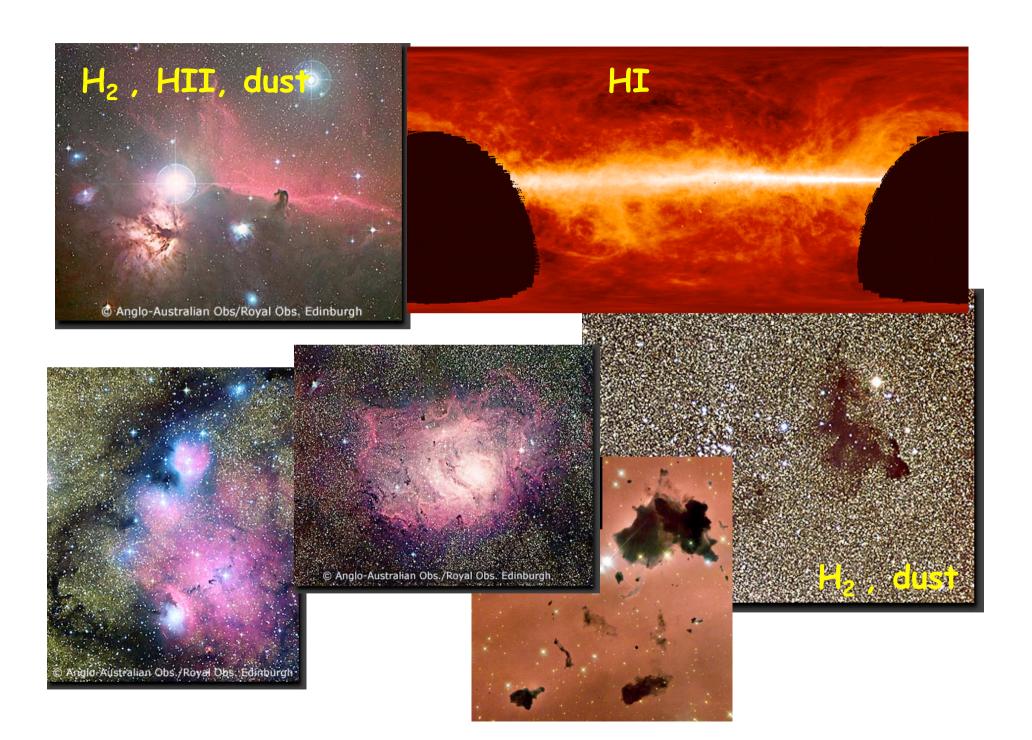
HII:  $M \sim 1 \times 10^8 M_{\odot}$ 

M(ISM) ~ 4% M(visible matter in Galaxy)

 $M(dust) \sim 1-2\% M(ISM)$ 

Energy in the ISM:

Radiation field, magnetic fields, cosmic rays


#### High density? Not really... (only in some locations):

High-density molecular cloud core: ≥ 10<sup>6</sup> particles cm<sup>-3</sup>

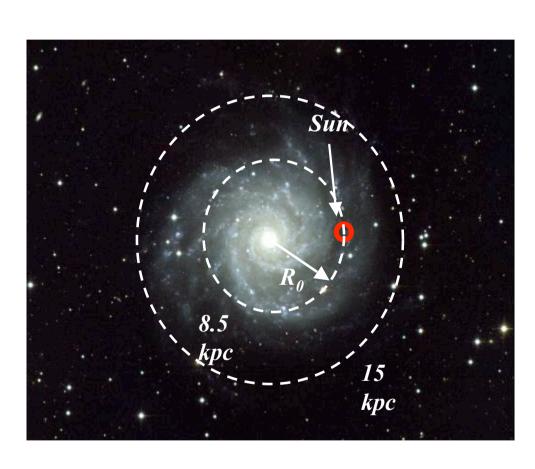

Earth's atmosphere at sea level:  $\sim 3 \times 10^{19}$  particles cm<sup>-3</sup>

Best terrestrial vacuum:  $3x10^{12-13}$  particles cm<sup>-3</sup>!!

Average density ISM: ~ 1 particle cm<sup>-3</sup>



# What you see depends on frequency Orion: optical, IR, and mm




### HH46 – Visual → NIR → MIR

### **The Spitzer-view**

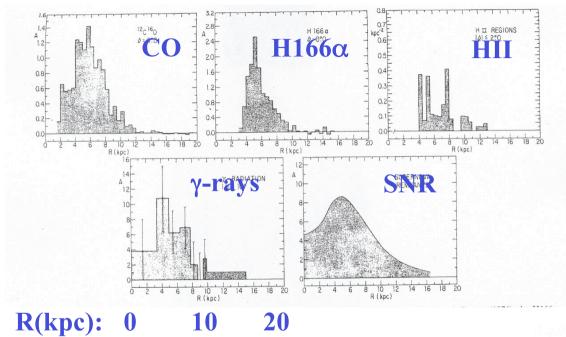


## Inner, outer, & (far-) outer Galaxy

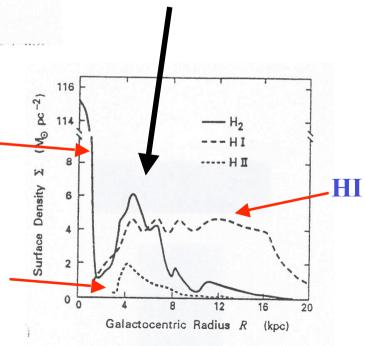


Solar circle:  $R = R_0 = 8.5 \text{ kpc}$ 

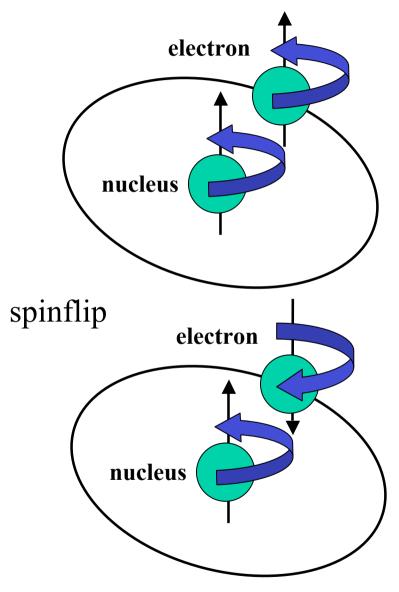
Inner Galaxy:  $R < R_0$ 


Outer Galaxy: R > R<sub>0</sub>

Far-Outer Galaxy: R > 15 kpc


### **Distribution ISM**

 $H_2$ 


HII



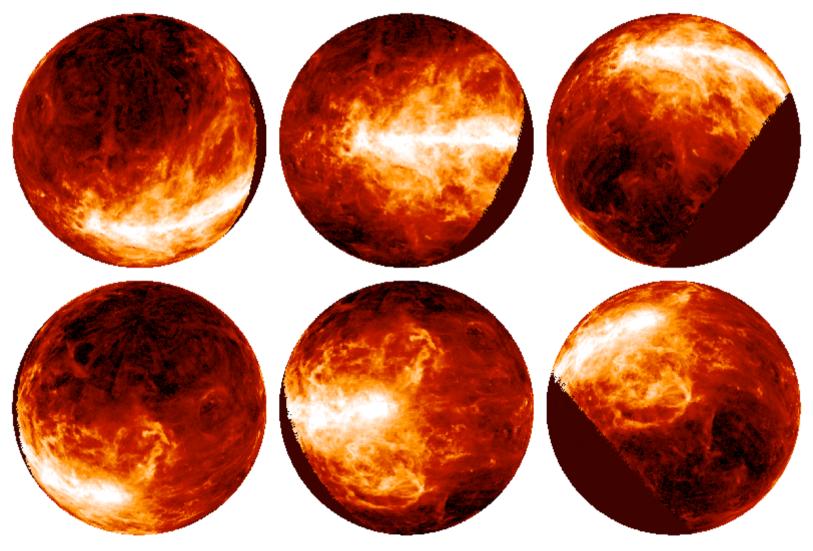
Distributions peak at  $R < R_0 = 8.5 \text{kpc}$ Max. extent ~  $2 R_0$  Galactic ring 4 < R < 6 kpc



### Radiation mechanism of HI



E<sub>2</sub>: high


 $\Delta E = E_2 - E_1 = hv$ at 1.4 GHz (21.2 cm)

 $E_1$ : low

Spontaneous trans. prob. A=2.85 10<sup>-15</sup> s<sup>-1</sup>, i.e. once every 12 Myr!

De-excitation governed by collisions.

## Galactic distribution HI

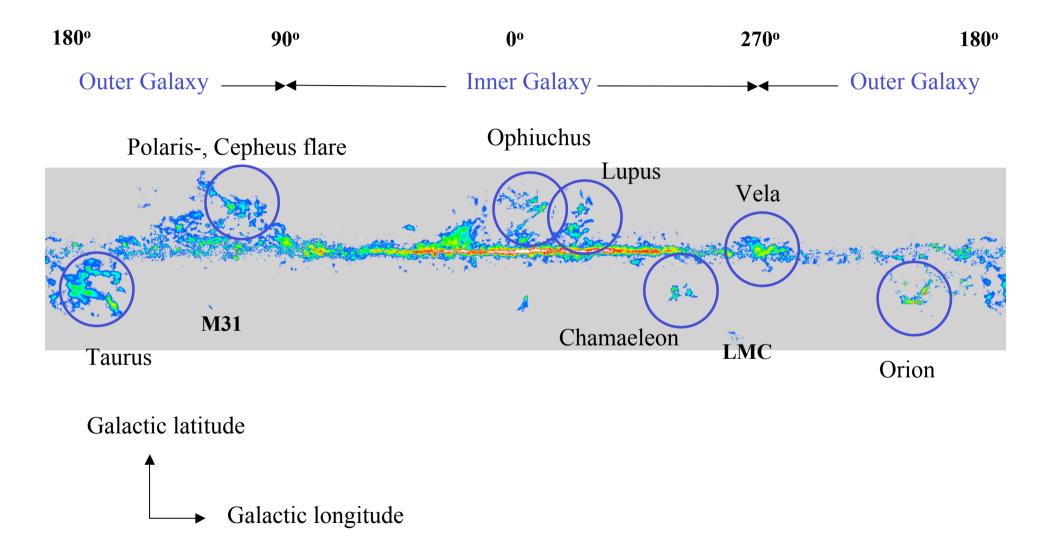


Hartmann & Burton 1994

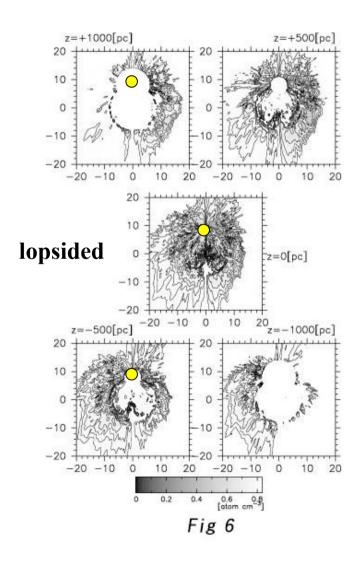
# CO, not H<sub>2</sub>

ISM composed essentially of hydrogen:

HI: 21-cm line

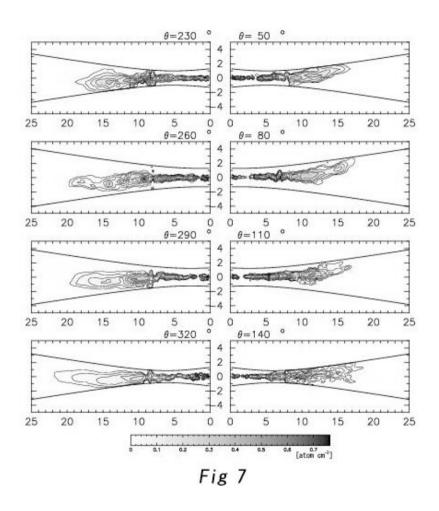

 $H_2$ : symmetric molecule  $\Rightarrow$  no radio emission

- UV absorption lines
- IR emission lines


CO: most abundant after  $H_2$ :  $[H_2]/[CO] \sim 1 \times 10^{-4}$ .

- excited by collisions with H<sub>2</sub>
- easily observed rotational transitions at (sub-)mm wavelengths
- $n(H_2)$  ≥ a few ×  $10^3$  cm<sup>-3</sup>

### Galactic distribution CO




#### HI: tilted disk



#### Nakanishi & Sofue 2003 PASJ

### HI: warped & flared disk



Same seen in H<sub>2</sub>/CO

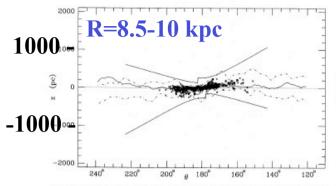



Fig. 8a. Distribution with galactocentric azimuth of the z heights of molecular clouds with kinematic distances in the range R=8.5 to  $10.0\,\mathrm{kpc}$ 

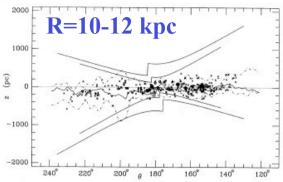



Fig. 8b. Shape of the molecular cloud layer at 10 < R < 12 kpc

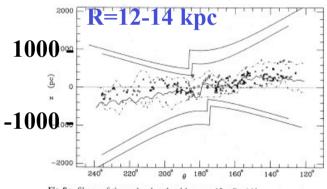



Fig. 8c. Shape of the molecular cloud layer at 12 < R < 14 kpc

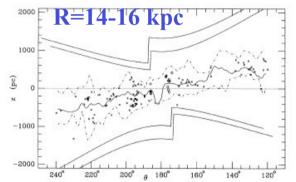
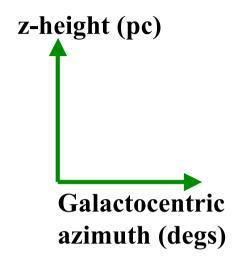




Fig. 8d. Shape of the molecular cloud layer at 14 < R < 16 kpc



# Warping & flaring in CO

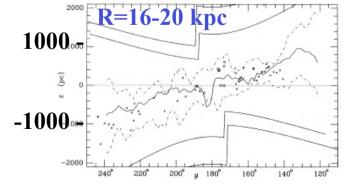
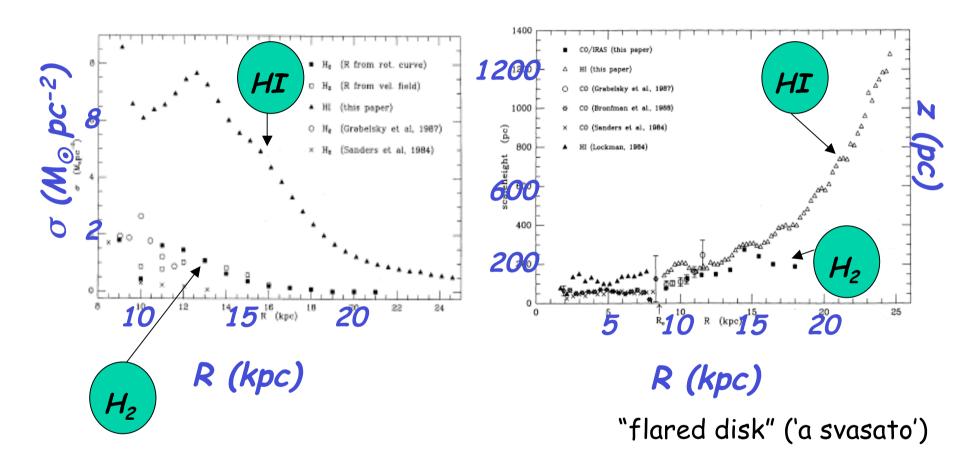




Fig. 8e. Shape of the molecular cloud layer at 16 < R < 20 kpc

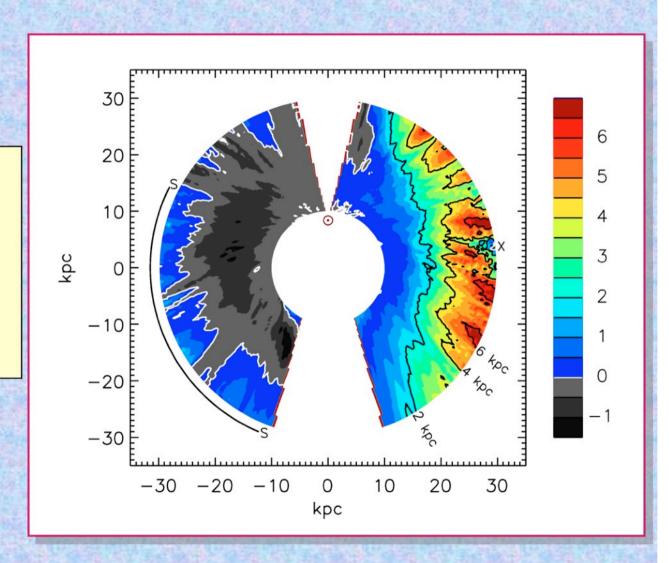
Wouterloot, Brand, Burton, & Kwee 1990, A&A 120, 21

### **Surface density**

### Scale height

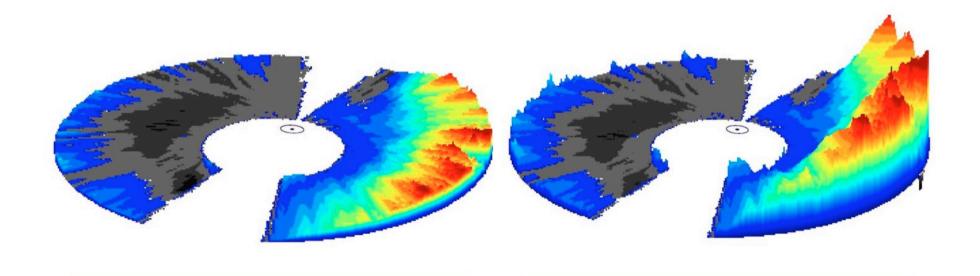


In OG: Surface density down, scale height up ⇒ volume density even lower


Wouterloot, Brand, Burton, & Kwee 1990

# Displacement of mean plane from $b = 0^{\circ}$

Blue, Red = pos

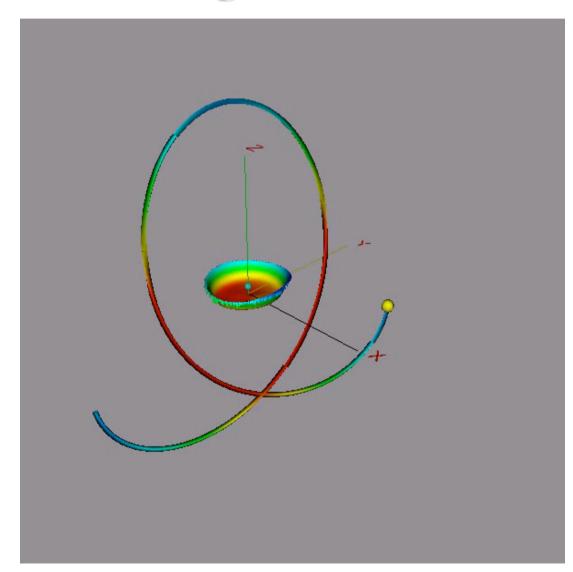

Grey = neg

Darker hues mean higher amplitude



Levine, Blitz, Heiles, Weinberg 2008, 2006

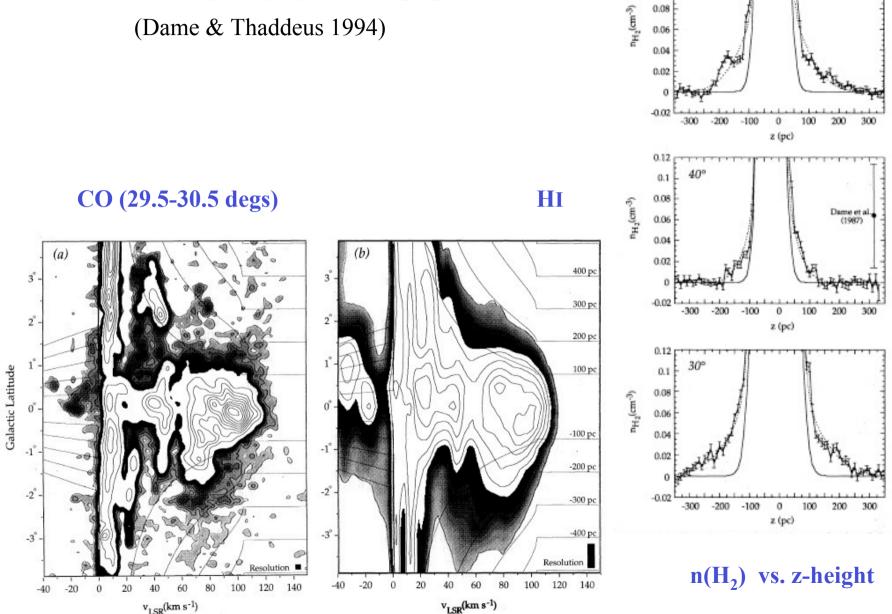
# View of warp from $l = 30^{\circ}$




5x exaggeration

Levine, Blitz, Heiles, Weinberg 2008, 2006

To Scale

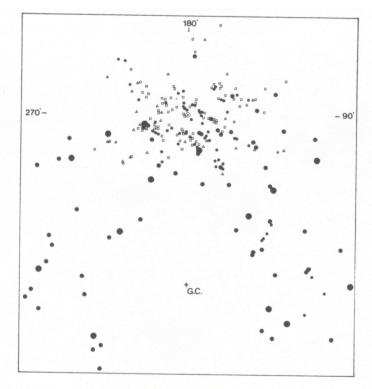

# Milky Way Galaxy: "warped and vibrating like a drum"



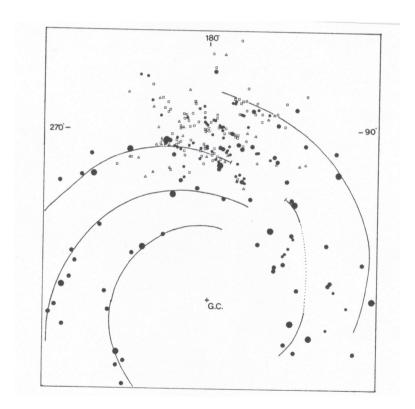
Levine, Blitz, Heiles, Weinberg 2008, 2006

### A thick disk in CO

(Dame & Thaddeus 1994)

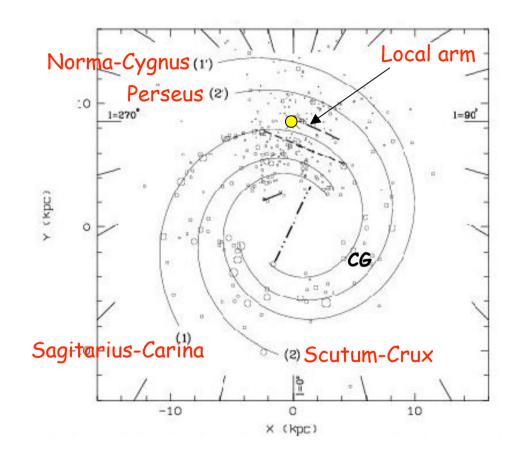



 $1 = 50^{\circ}$ 


0.06

## Is there a spiral arm pattern?

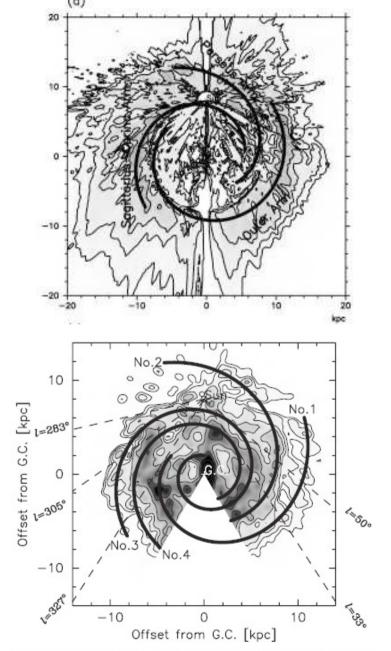
Distribution of HII regions (young stars)

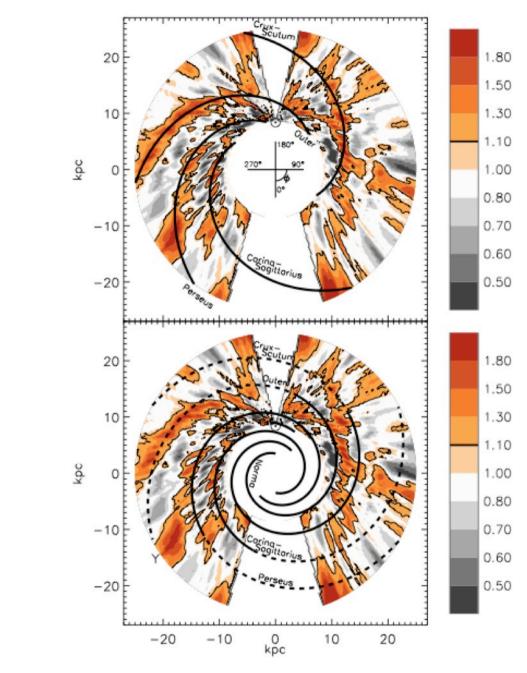



Same, but with spiral pattern drawn in



# **Spiral structure**


From  $H\alpha$  (Russeil, A&A 2003)




From *CO*(1-0)

(Nakanishi & Sofue 2006 PASJ)

From HI (Nakanishi & Sofue 2003 PASJ)





Levine, Blitz, Heiles, Weinberg 2008, 2006

From HI

### \*NEW\* Outer arm in HI

McClure-Griffiths et al. 2004

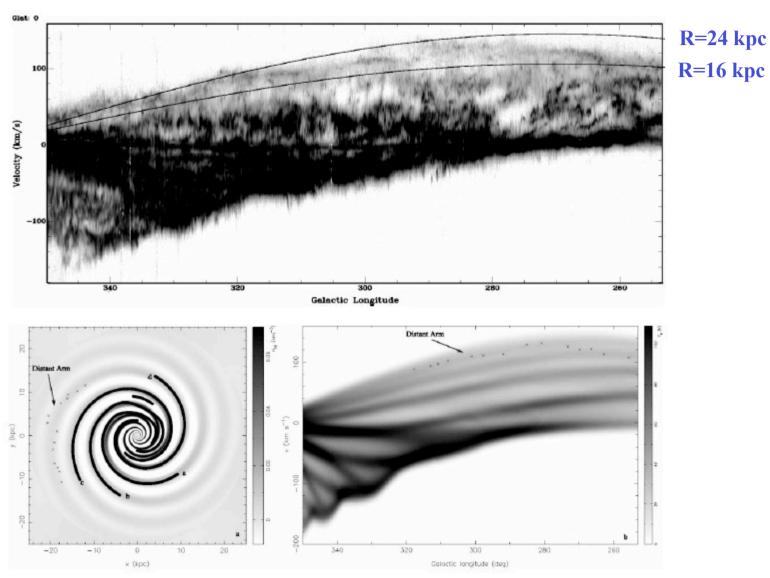



Fig. 1.—(a) Differential H i density (spiral perturbation minus the underlying Toomre disk) for the simple four-arm Milky Way spiral model described in δ 4.

# The multi-phase ISM

|                |        | T(K)               | n <sub>H</sub> (cm <sup>-3</sup> ) | f <sub>V</sub> | f <sub>M</sub> | Probes                     |
|----------------|--------|--------------------|------------------------------------|----------------|----------------|----------------------------|
| HII            |        |                    |                                    |                |                |                            |
| traditional    |        | 104                | 0.1-104                            | 0.001          | 0.02           | Hα, recomb.<br>lines       |
| coronal        | HIM    | ≥3×10 <sup>5</sup> | 0.003                              | 0.6?           | 0.001          | [OVI], X-rays              |
| warm           | WIM    | 8000               | 0.25                               | 0.2            | 0.1?           | ΗΙ,Ηα, Η166α               |
| HI             |        |                    |                                    |                |                |                            |
| clouds         | CNM    | 80                 | 40                                 | 0.025          | 0.4            | HI                         |
| warm           | WNM    | 8000               | 0.4                                | 0.1-0.5?       |                | HI                         |
| H <sub>2</sub> |        |                    |                                    |                |                |                            |
| diffuse        | Transl | 30-80              | 10 <sup>2</sup> -10 <sup>3</sup>   | ≤0.01          |                | HI,CO,100μm                |
| dense          | Dark   | 10-100             | 10 <sup>3</sup> -10 <sup>6</sup> ( | 0.005          | 0.5            | mm molec.lines<br>FIR dust |

## Models of the ISM (2-phase)

Early model: Field, Goldsmith & Habing 1969

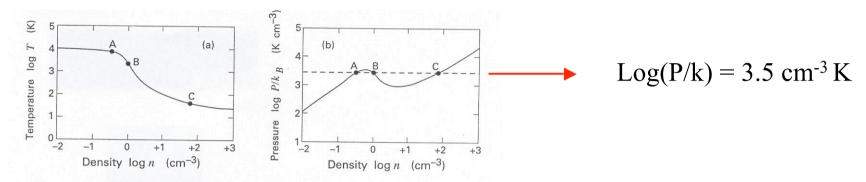


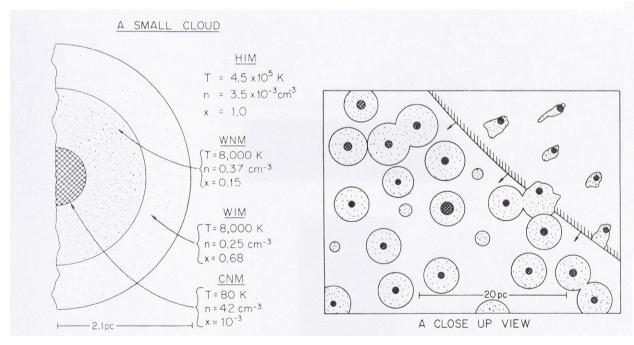

Figure 2.5 (a) Theoretical prediction for the equilibrium temperature of interstellar gas, displayed as a function of the number density n. (b) Equilibrium pressure nT as a function of number density. The horizontal dashed line indicates the empirical nT-value for the interstellar medium.

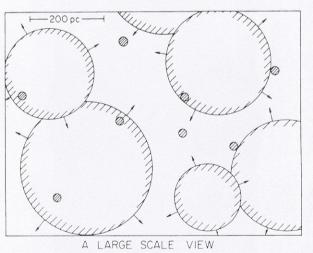
Assume pressure equilibrium (P/k  $\propto$  nT = constant)

Stable points: A and C, corresponding to:

WNM (n=0.4, T=7000) and CNM (n=60, T=50)

Explained most of the then-known observations.


## Models of the ISM (3-phase)


Ostriker & McKee 1977: 3-phase model

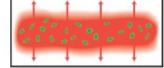
Gas distributed among 4(!) forms: HIM, WIM, WNM, CNM that are in P-equil. at  $P/k \approx 3000 \text{ Kcm}^{-3}$ .

SNe, OB-winds create system of hot tunnels in ISM


Recent assessment: Cox, 2005 Ann. Rev. A&A 43



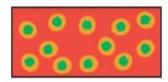



# Models of the ISM (Cox upgrade)

#### CONCEPTIONS: Within the disk

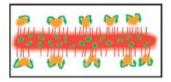


#### Warm intercloud gas


- Local SNRs
- · Ionized regions

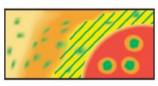


CONCEPTIONS: Vertical


#### Thermal wind

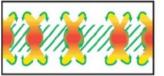
· From escaping hot intercloud gas Or, a hot halo




#### Hot intercloud gas

- · Dilute SNRs
- · Evaporating clouds
- · Ionized surfaces




#### Galactic fountain 1

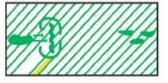
· From escaping hot intercloud gas which cools



#### Tepid intercloud gas

- · Local hotter regions
- · Evaporating clouds




#### Galactic fountain 2

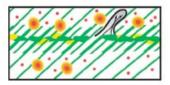
· From superbubbles breaking out above the disk



#### Adding superbubbles

· But to which picture?




#### Thick quiescent disk

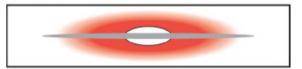
- · Superbubbles confined
- · Spiral density waves
- · Ionization mechanism?



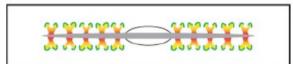
#### Flux ropes

- Filamentation
- Emptiness



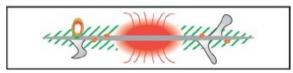

#### Active halo

- · Cosmic ray wind
- · Micr oflares
- High z super novae

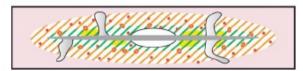

#### CONCEPTIONS: Global

Global thermal wind...

...or a hot halo?




#### Galactic fountain




#### Thick Quiescent Disk...

...with nuclear wind?

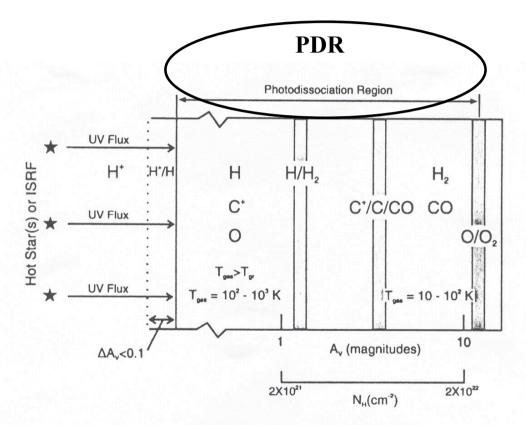


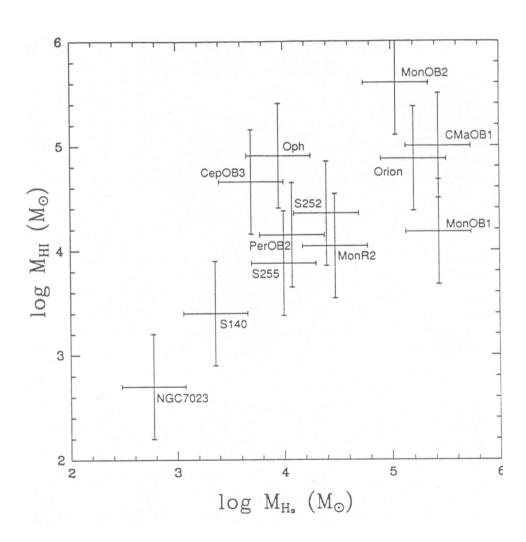
#### Active halo



Firure 10 Various conceptions of the larger scale structure of the Galactic atmosphere. In this figure, hatched green indicates warm HI; hatched green on yellow background-diffuse warm HII; orange-hotter gas bearing OVI; red-material hot enough to emit X rays; gray-plumes of escaping cosmic rays; and red dotsmicroflares. Problems with the top two panels are discussed in the text. The lower two panels contain some elements of potentially greater realism.

### Molecular clouds – transition interface

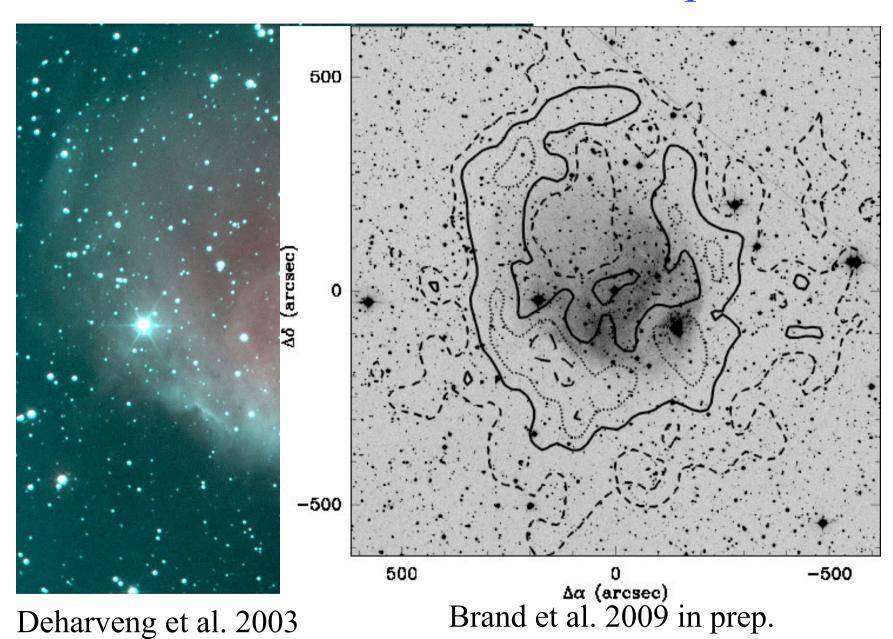




Figure 3 A schematic diagram of a photodissociation region. The PDR is illuminated from the left and extends from the predominantly atomic surface region to the point where  $O_2$  is not appreciably photodissociated ( $\simeq 10$  visual magnitude). Hence, the PDR includes gas whose hydrogen is mainly  $H_2$  and whose carbon is mostly CO. Large columns of warm O, C, C<sup>+</sup>, and CO and vibrationally excited  $H_2$  are produced in the PDR. The gas temperature  $T_{gas}$  generally exceeds the dust temperature  $T_{es}$  in the surface layer.

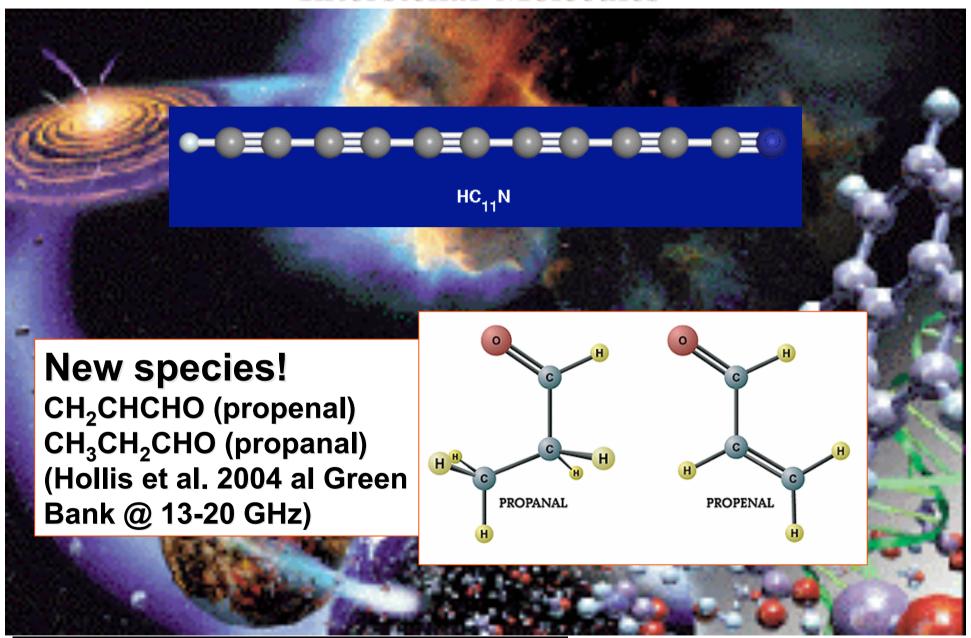
Molecular clouds are self-shielding against UV radiation.

Clouds are surrounded by envelope of HI.

Inside: molecules. Most abundant after  $H_2$  is  $CO(10^{-4})$ .


# Molecular clouds: atomic envelope




# **Sh 2 - 217** Hα



Deharveng et al. 2003



#### **Interstellar Molecules**

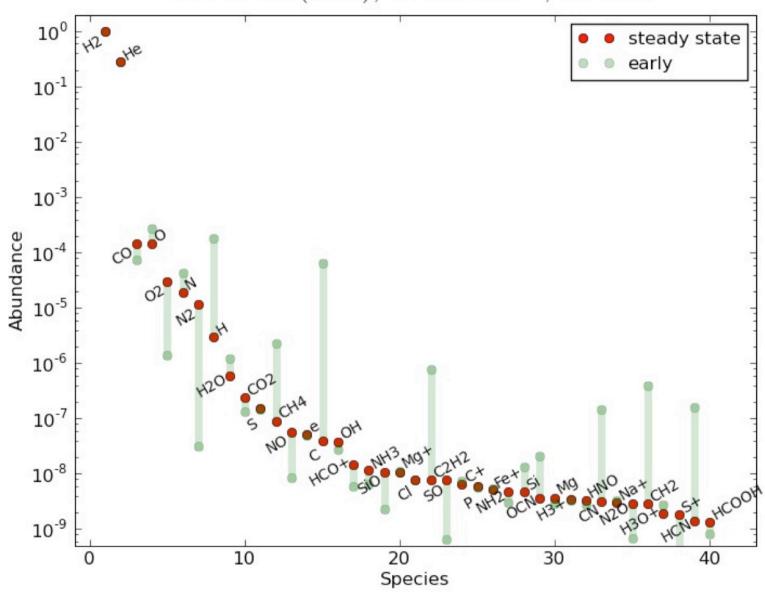


Circa 150 molecules have been detected in space

| <b>D</b> | 4   |
|----------|-----|
| Page     | - 1 |
| lago     |     |
|          |     |

| Molecules in the Interstellar M | ledium or Circumstellar | Shells (as of 09/2009) |
|---------------------------------|-------------------------|------------------------|
|---------------------------------|-------------------------|------------------------|

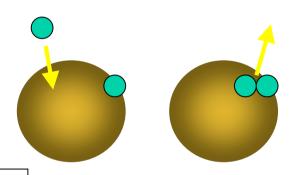
| 2<br>atoms      | 3<br>atoms       | 4<br>atoms                      | 5<br>atoms                      | 6<br>atoms                        | 7<br>atoms                        | 8<br>atoms                                 | 9 atoms                             | 10<br>atoms                         | 11<br>atoms                                | 12<br>atoms                                    | 13<br>atoms        |  |
|-----------------|------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------|------------------------------------------------|--------------------|--|
| H <sub>2</sub>  | C3*              | c-C <sub>3</sub> H              | C <sub>5</sub> *                | C <sub>5</sub> H                  | C <sub>6</sub> H<br>2008          | CH <sub>3</sub> C <sub>3</sub> N           | СН <sub>3</sub> С <sub>4</sub> Н    | CH <sub>3</sub> C <sub>5</sub> N    | HC <sub>9</sub> N                          | C <sub>6</sub> H <sub>6</sub> * (?)            | HC <sub>11</sub> N |  |
| AIF             | C <sub>2</sub> H | I-C <sub>3</sub> H              | C <sub>4</sub> H                | I-H <sub>2</sub> C <sub>4</sub>   | CH <sub>2</sub> CHCN<br>2008      | HC(O)OCH <sub>3</sub>                      | CH <sub>3</sub> CH <sub>2</sub> CN  | (CH <sub>3</sub> ) <sub>2</sub> CO  | CH <sub>3</sub> C <sub>6</sub> H           | C <sub>2</sub> H <sub>5</sub> OCH <sub>3</sub> |                    |  |
| AICI            | C <sub>2</sub> O | C <sub>3</sub> N                | C <sub>4</sub> Si               | C <sub>2</sub> H <sub>4</sub> *   | CH <sub>3</sub> C <sub>2</sub> H  | СН <sub>3</sub> СООН                       | (CH <sub>3</sub> ) <sub>2</sub> O   | (CH <sub>2</sub> OH) <sub>2</sub>   | C <sub>2</sub> H <sub>5</sub> OCHO<br>2009 | n-C <sub>3</sub> H <sub>7</sub> CN<br>2009     |                    |  |
| C2**            | C <sub>2</sub> S | C3O                             | $I-C_3H_2$                      | CH <sub>3</sub> CN                | HC <sub>5</sub> N                 | C <sub>7</sub> H                           | $\mathrm{CH_3CH_2OH}$               | СН <sub>3</sub> СН <sub>2</sub> СНО |                                            |                                                |                    |  |
| СН              | CH <sub>2</sub>  | C <sub>3</sub> S                | c-C <sub>3</sub> H <sub>2</sub> | CH <sub>3</sub> NC                | СН <sub>3</sub> СНО               | H <sub>2</sub> C <sub>6</sub>              | HC <sub>7</sub> N                   |                                     |                                            |                                                |                    |  |
| CH <sup>+</sup> | HCN              | C <sub>2</sub> H <sub>2</sub> * | H <sub>2</sub> CCN              | CH <sub>3</sub> OH                | $CH_3NH_2$                        | СН <sub>2</sub> ОНСНО                      | C <sub>8</sub> H                    |                                     |                                            |                                                |                    |  |
| CN              | HCO              | NH <sub>3</sub>                 | CH <sub>4</sub> *               | CH <sub>3</sub> SH                | c-C <sub>2</sub> H <sub>4</sub> O | I-HC <sub>6</sub> H* (?)                   | CH <sub>3</sub> C(O)NH <sub>2</sub> |                                     |                                            |                                                |                    |  |
| co              | HCO*             | HCCN                            | HC <sub>3</sub> N               | HC <sub>3</sub> NH*               | H <sub>2</sub> ССНОН              | CH <sub>2</sub> CHCHO<br>(?)               | C <sub>8</sub> H <sup>-</sup>       |                                     |                                            |                                                |                    |  |
| co+             | HCS*             | HCNH*                           | HC <sub>2</sub> NC              | HC <sub>2</sub> CHO               | C <sub>6</sub> H <sup>-</sup>     | CH <sub>2</sub> CCHCN                      | C <sub>3</sub> H <sub>6</sub>       |                                     |                                            |                                                |                    |  |
| CP              | HOC*             | HNCO                            | нсоон                           | NH <sub>2</sub> CHO               |                                   | H <sub>2</sub> NCH <sub>2</sub> CN<br>2008 |                                     |                                     |                                            |                                                |                    |  |
| SIC             | H <sub>2</sub> O | HNCS                            | H <sub>2</sub> CNH              | C <sub>5</sub> N                  |                                   |                                            |                                     |                                     |                                            |                                                |                    |  |
| HCI             | H <sub>2</sub> S | HOCO*<br>2008                   | H <sub>2</sub> C <sub>2</sub> O | I-HC <sub>4</sub> H* (?           |                                   |                                            |                                     |                                     |                                            |                                                |                    |  |
| KCI             | HNC              | H <sub>2</sub> CO               | H <sub>2</sub> NCN              | I-HC <sub>4</sub> N               |                                   |                                            |                                     |                                     |                                            |                                                |                    |  |
| NH.             | HNO              | H <sub>2</sub> CN               | HNC <sub>3</sub>                | o-H <sub>2</sub> C <sub>3</sub> O |                                   |                                            |                                     | 70 1                                | 50 m                                       | 101%                                           |                    |  |
| NO              | MgCN             | H <sub>2</sub> CS               | SIH4*                           | H <sub>2</sub> CONH<br>(?)        |                                   | Ca. 150 mol's                              |                                     |                                     |                                            |                                                |                    |  |


Source: CDMS [Cologne Database for Molecular Spectroscopy]

| 2<br>atoms      | 3                                       | 4<br>ms atoms                         | 5<br>atoms                            | 6<br>atoms                            | 7<br>atoms | 8<br>atoms | 9 atoms | 10<br>atoms | 11    | Page  | $\frac{2}{13}$ |
|-----------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------|------------|---------|-------------|-------|-------|----------------|
|                 | atoms                                   |                                       |                                       |                                       |            |            |         |             | atoms | atoms | atoms          |
| NS              | MgNC                                    | H <sub>3</sub> O*                     | H <sub>2</sub> COH <sup>+</sup>       | C <sub>5</sub> N <sup>-</sup><br>2008 |            |            |         |             |       |       |                |
| NaCl            | N <sub>2</sub> H <sup>+</sup>           | c-SiC <sub>3</sub>                    | C <sub>4</sub> H <sup>-</sup><br>2008 |                                       |            |            |         |             |       |       |                |
| ОН              | N <sub>2</sub> O                        | CH <sub>3</sub> *                     | HC(O)CN<br>2008                       |                                       |            |            |         |             |       |       |                |
| PN              | NaCN                                    | C <sub>3</sub> N <sup>-</sup><br>2008 |                                       |                                       |            |            |         |             |       |       |                |
| so              | ocs                                     | PH <sub>3</sub> ?<br>2008             |                                       |                                       |            |            |         |             |       |       |                |
| so*             | SO <sub>2</sub>                         | HCNO<br>2009                          |                                       |                                       |            |            |         |             |       |       |                |
| SiN             | c-SiC <sub>2</sub>                      | HOCN ?<br>2009                        |                                       |                                       |            |            |         |             |       |       |                |
| SiO             | CO <sub>2</sub> *                       | HSCN<br>2009                          |                                       |                                       |            |            |         |             |       |       |                |
| SiS             | NH <sub>2</sub>                         |                                       |                                       |                                       |            |            |         |             |       |       |                |
| CS              | H3**                                    |                                       |                                       |                                       |            |            |         |             |       |       |                |
| HF              | H <sub>2</sub> D*,<br>HD <sub>2</sub> * |                                       |                                       |                                       |            |            |         |             |       |       |                |
| SH*             | SICN                                    |                                       |                                       |                                       |            |            |         |             |       |       |                |
| HD              | AINC                                    |                                       |                                       |                                       |            |            |         |             |       |       |                |
| FeO ?           | SINC                                    |                                       |                                       |                                       |            |            |         |             |       |       |                |
| 02              | HCP                                     |                                       |                                       |                                       |            |            |         |             |       |       |                |
| CF <sup>+</sup> | CCP<br>2008                             |                                       |                                       |                                       |            |            |         |             |       |       |                |
| SiH ?           |                                         |                                       |                                       |                                       |            |            |         |             |       |       |                |
| PO              |                                         |                                       |                                       |                                       |            |            |         |             |       |       |                |
| AIO<br>2009     |                                         |                                       |                                       |                                       |            |            |         |             |       |       |                |

#### Extragalactic Molecules (as of 01/2008)

| 2 atoms            | 3 atoms                       | 4 atoms                   | 5 atoms                         | 6 atoms            | 7 atoms |
|--------------------|-------------------------------|---------------------------|---------------------------------|--------------------|---------|
| ОН                 | H <sub>2</sub> O              | H <sub>2</sub> CO         | c-C <sub>3</sub> H <sub>2</sub> | СН <sub>3</sub> ОН | СН3ССН  |
| co                 | HCN                           | NH <sub>3</sub>           | HC <sub>3</sub> N               | CH <sub>3</sub> CN |         |
| H <sub>2</sub>     | HCO*                          | HNCO                      | CH <sub>2</sub> NH              |                    |         |
| CH **              | C <sub>2</sub> H              | H2CS (?)                  | NH <sub>2</sub> CN              |                    |         |
| cs                 | HNC                           | HOCO*                     |                                 |                    |         |
| CH <sup>+</sup> ** | N <sub>2</sub> H <sup>+</sup> | C <sub>3</sub> H          |                                 |                    |         |
| CN                 | ocs                           | H <sub>3</sub> O*<br>2008 |                                 |                    |         |
| SO                 | HCO                           |                           |                                 |                    |         |
| SiO                | H <sub>2</sub> S              |                           |                                 |                    |         |
| CO* (?)            | SO <sub>2</sub>               |                           |                                 |                    |         |
| NO                 | HOC*                          |                           |                                 |                    |         |
| NS                 | C2S                           |                           |                                 |                    |         |


Lee et al. (1996),  $n = 10^4 \text{ cm}^{-3}$ , T = 10K



# Astrochemistry. I.

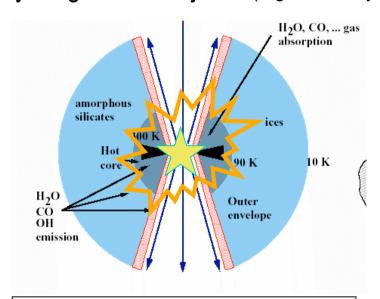
• Formation of H<sub>2</sub> (Gould & Salpeter 1963; Hollenbach & Salpeter 1970; Pirronello et al. 1999; Katz et al. 1999; Cazaux & Tielens 2002; Habart et al. 2003)

$$R \sim 10^{-17} \text{ cm}^3 \text{ s}^{-1}$$

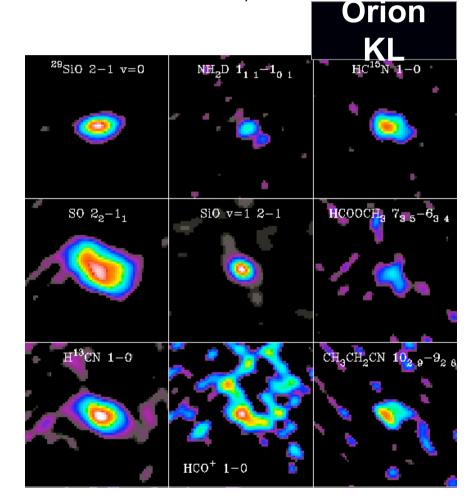


#### In gas phase:

$$H^- + H \Rightarrow H_2 + e \quad R \sim 10^{-21} - 10^{-20} \text{ cm}^3 \text{ s}^{-1}$$

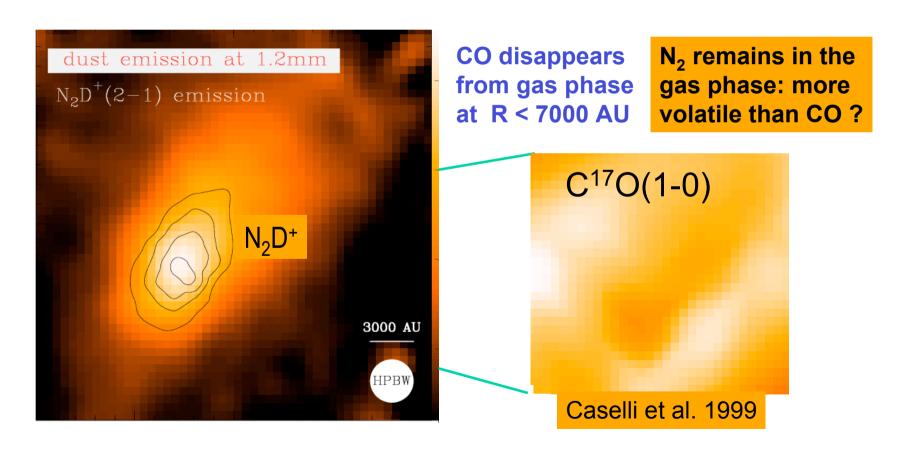

$$H + H \Rightarrow H_2 + h v R \sim 10^{-29} - 10^{-31} \text{ cm}^3 \text{ s}^{-1}$$

In molecular clouds: ion-neutral reactions

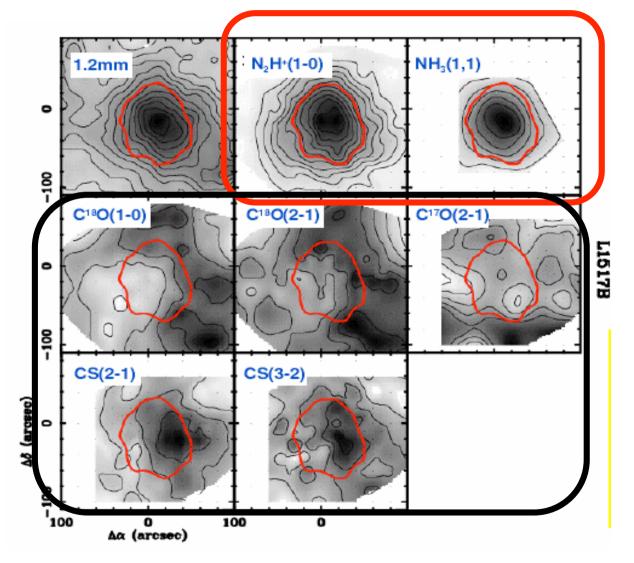

$$C^+ + H_2 \Rightarrow CH_2^+ + CH_2^+ + e^- \Rightarrow CH + H$$
  
 $CH + O \Rightarrow CO + H$ 

# Astrochemistry. II.

• Complex organic molecules are easily observed near young stellar objects (e.g. Charnley et al. 1992; Caselli et al. 1993)



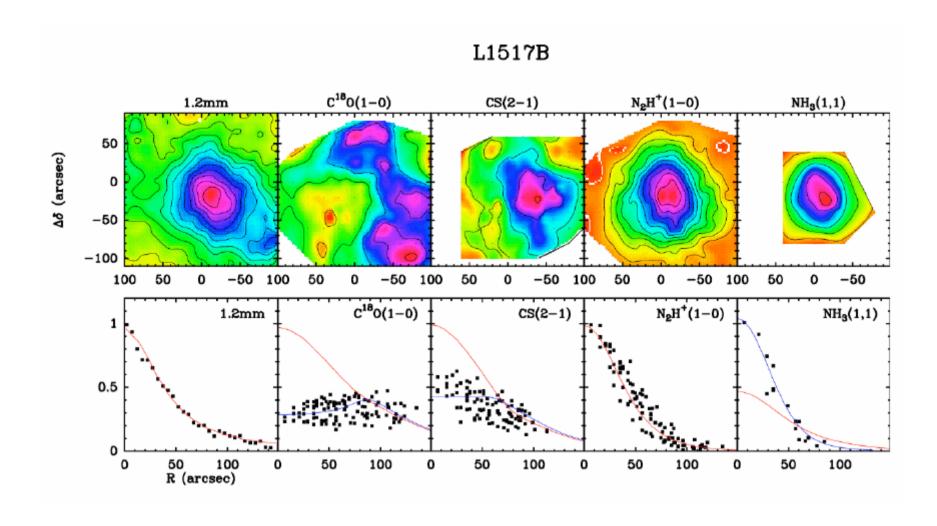

H-rich complex N-bearing and O-bearing molecules: CH<sub>3</sub>CN, CH<sub>2</sub>CHCN, CH<sub>3</sub>CH<sub>2</sub>CN, CH<sub>3</sub>OCH<sub>3</sub>, HCOOCH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>OH.. (e.g. Blake et al. 1987)



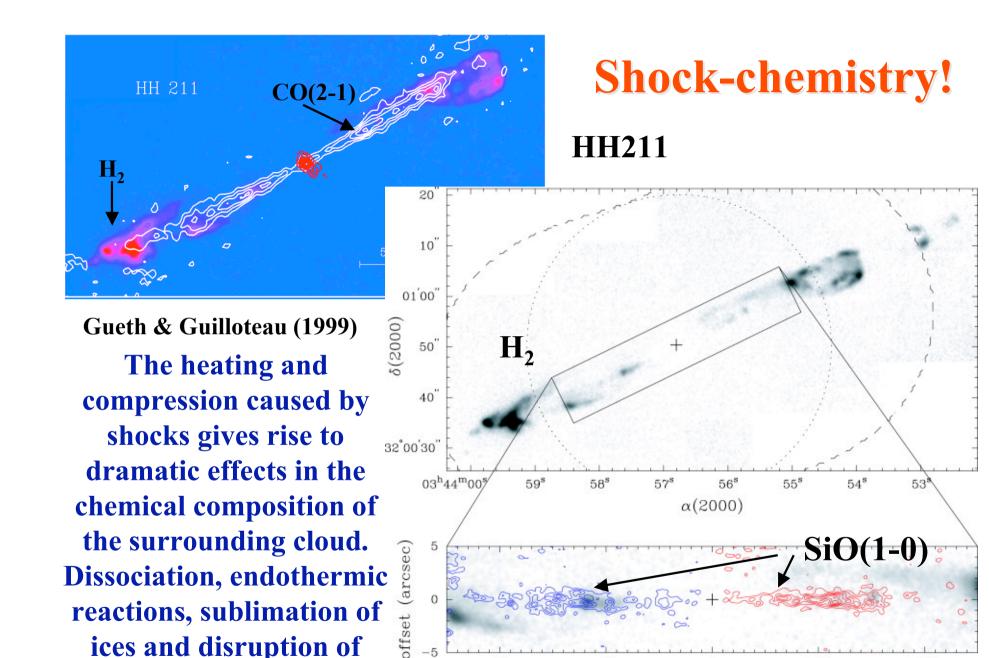

#### Astrochemistry. III.

- To understand the distribution of the various molecular species to study the physical and kinematical properties of molecular clouds and of star formation.
- Example: CO, typically used to determine the mass of molecular clouds, disappears from the gas phase at densities  $n(H2) > 10^4$  cm<sup>-3</sup> and T < 20 K.




#### L1517B: a low-mass pre-stellar core with depletion




On the other hand, N-bearing species well trace the density profile seen in the dust continuum emission

C-bearing species completely miss the central density peak

Tafalla et al. 2004



Cores have order-of-magnitude radial CS and CO abundance gradients

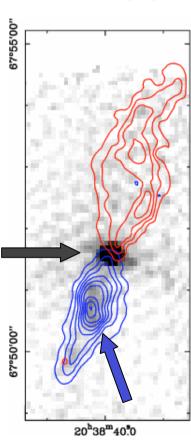


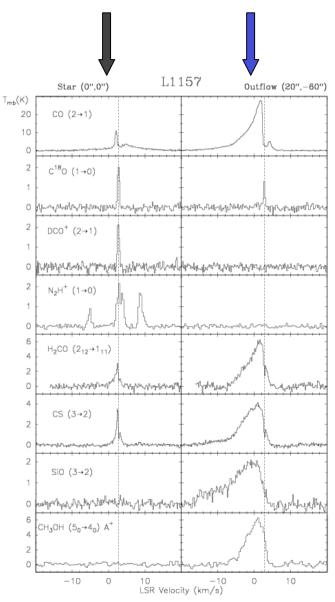
-20

offset from HH 211-mm (arcsec)

reactions, sublimation of ices and disruption of grains lead to a shock-

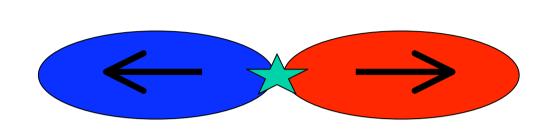
Chandler & Richer (2001) chemistry.


### Chemically rich outflows


Shock tracers: CH<sub>3</sub>OH, SiO, H<sub>2</sub>O, S-bearing species, H<sub>2</sub>CO.....

Bachiller & Tafalla (2000): an empirical time sequence of lowmass outflows?

1st stage (Class 0):
jet-like, HV bullets;
2nd stage (Class 0):
no bullets, rich
chemistry;
3rd stage (Class I):
shell structure,
evacuated cavity.


L1157



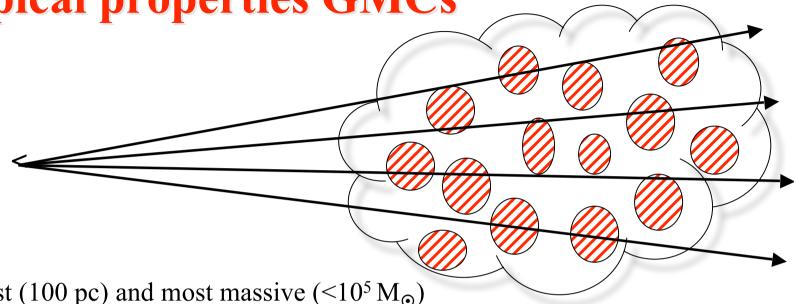


Bachiller et al. (2001)

#### Shock-enhanced abundances in outflows



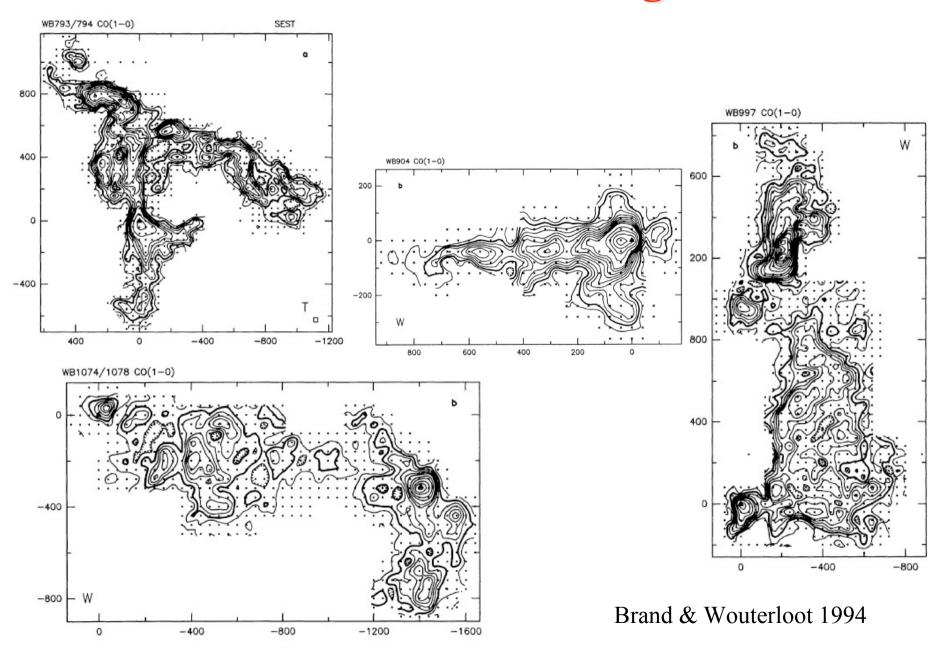



| SiO                | $10^{-10} - 10^{-6}$                       |
|--------------------|--------------------------------------------|
| CH <sub>3</sub> OH | 10 <sup>-7</sup> <b>-</b> 10 <sup>-5</sup> |
| $NH_3$             | ~ 10-6                                     |
| H <sub>2</sub> CO  | ~ 10-7                                     |
| HCN                | ~ 10-7                                     |
| 50                 | ~ 10-7                                     |

< 
$$10^{-12}$$
~  $10^{-9}$ 
~  $10^{-8}$ 
~  $10^{-8}$ 
~  $10^{-8}$ 
~  $5 \times 10^{-9}$ 

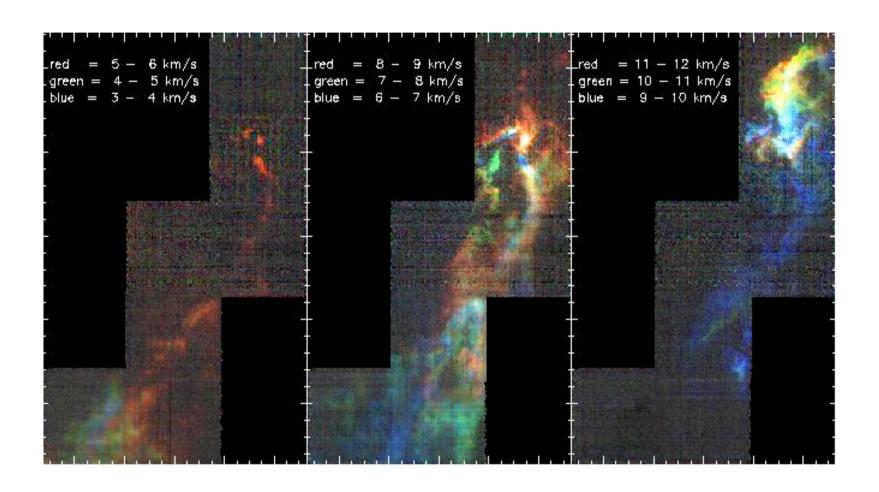
(with respect to  $H_2$ )

# PROPERTIES OF MOLECULAR CLOUDS


Typical properties GMCs



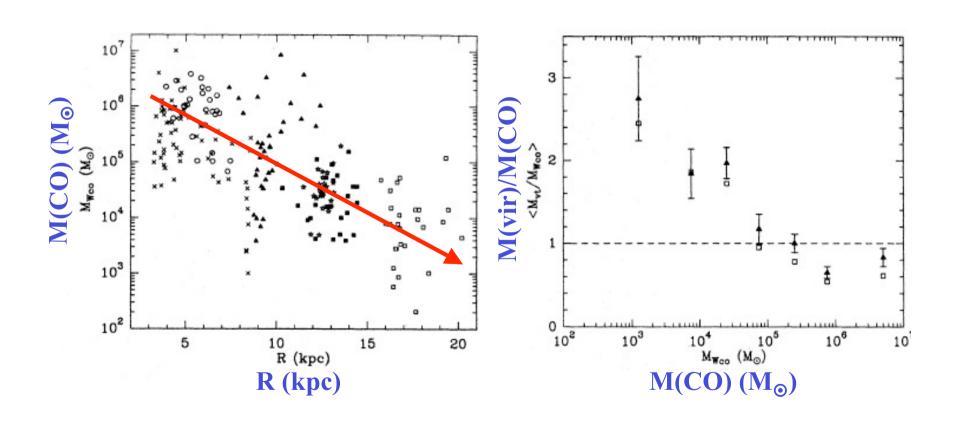
- Largest (100 pc) and most massive ( $<10^5 \, M_{\odot}$ ) objects in Galaxy
- Not uniform: volume f.f.<<1 surface f.f. ≈ 1 (≥ 1 clump along the l.o.s.)
- $\Delta V_{obs}$  >>  $\Delta V_{therm}$  ≈  $(8 ln 2 kT/\mu m_H)^{0.5}$  line profile determined by velocity field of clumps: bulk motions.
- Gravitationally bound  $P_{int}/k \sim 10^5 \text{ Kcm}^{-3} >>$  $< P_{ism}/k > \sim 10^4 \text{ Kcm}^{-3}$


- All OB stars form in GMCs
- Strong confinement to spiral arms (contrast arm-interarm > 28:1)
- $\Delta$ V(cloud-cloud) ≈ 3-9 km/s (median 4.2) ≠ f(M) ≠ f(R)
- -GMCs are young (< few  $10^7$  yr)
- Material stays locked up in stars: replenishment needed (SFR ~ 2-4 M<sub>☉</sub>/yr, return ~ 0.8 M<sub>☉</sub>/yr

# Molecular clouds: elongated



#### **Orion A**


#### $^{13}CO$ 220 GHz = 1.3 mm



Sheets and filaments

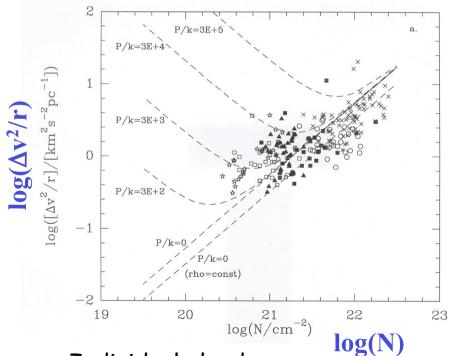
J. Bally (IAU227)

#### **Masses and mass-ratios**

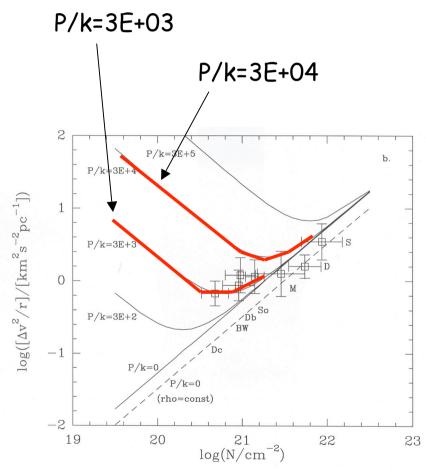


**Brand & Wouterloot 1995** 

#### Molecular clouds – virial- and pressure equilibrium


$$4\pi r^3 P_{\text{ext}} = M(\sigma_{3D})^2 - \frac{3}{5} \frac{GM^2}{r}$$

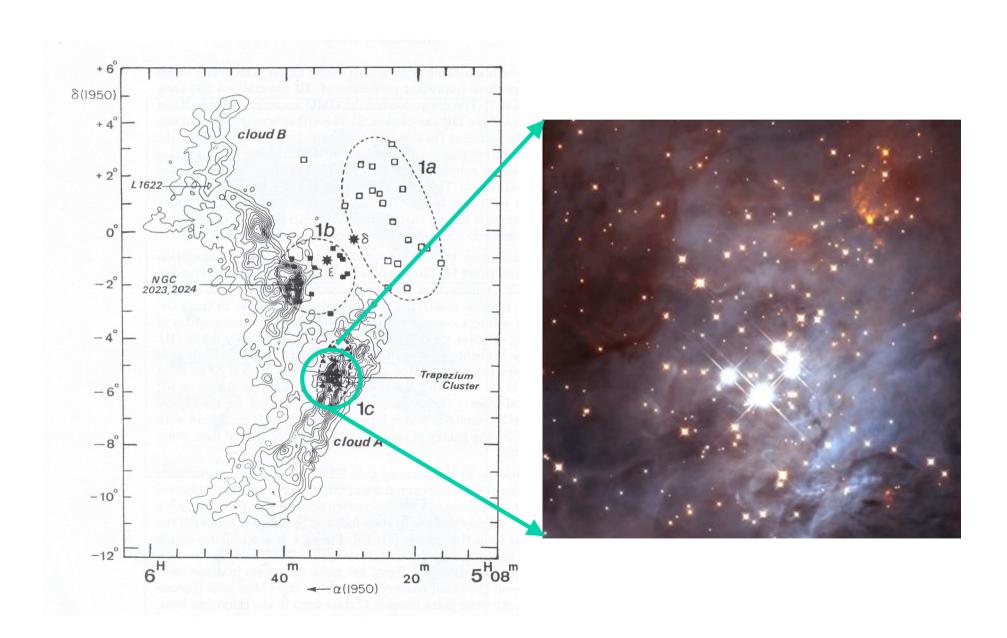
$$4\pi r^{3} P_{\text{ext}} = M(\sigma_{3D})^{2} - \frac{3}{5} \frac{GM^{2}}{r} \Rightarrow \frac{\Delta v^{2}}{r} = \frac{[fac1 * P_{\text{ext}} / k + fac2 * N(H_{2})^{2}]}{[fac3 * N(H_{2})]}$$


P<sub>ext</sub> dominates:

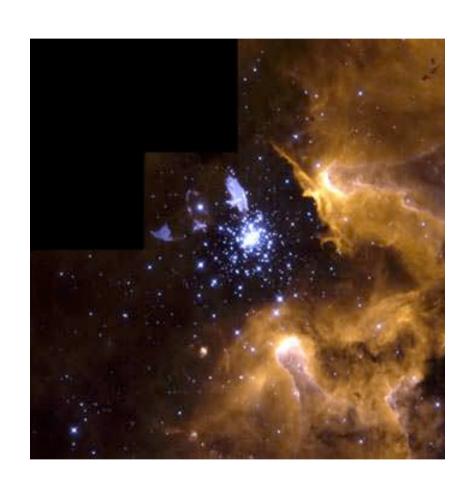
$$\frac{\Delta v^2}{r} \propto N(H_2)^{-1}$$

Self-grav. dominates:  $\frac{\Delta v^2}{\Delta v} \propto N(H_2)$ 




Individual clouds

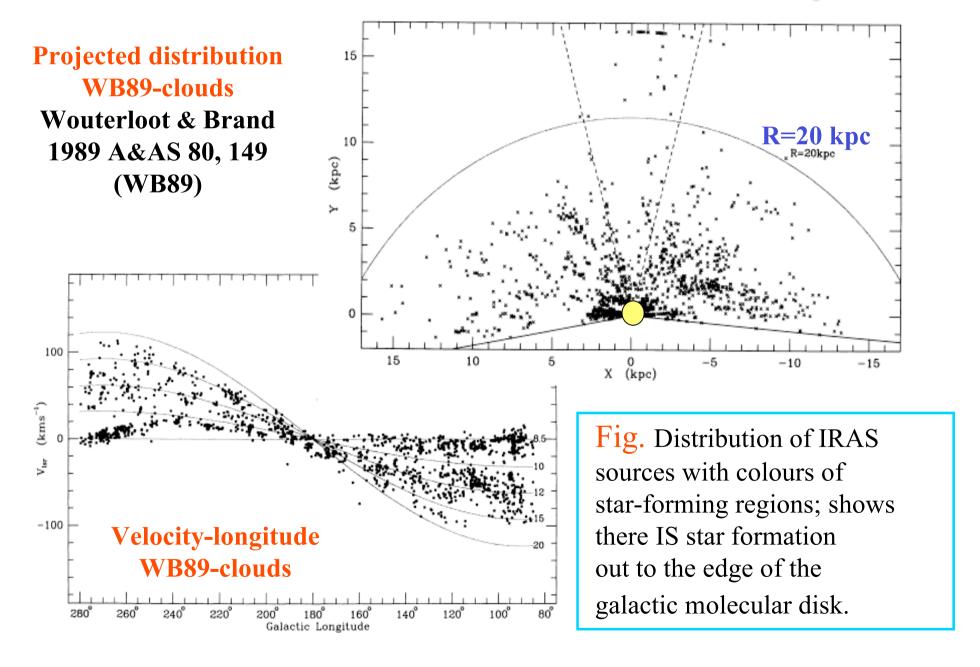



Sample averages

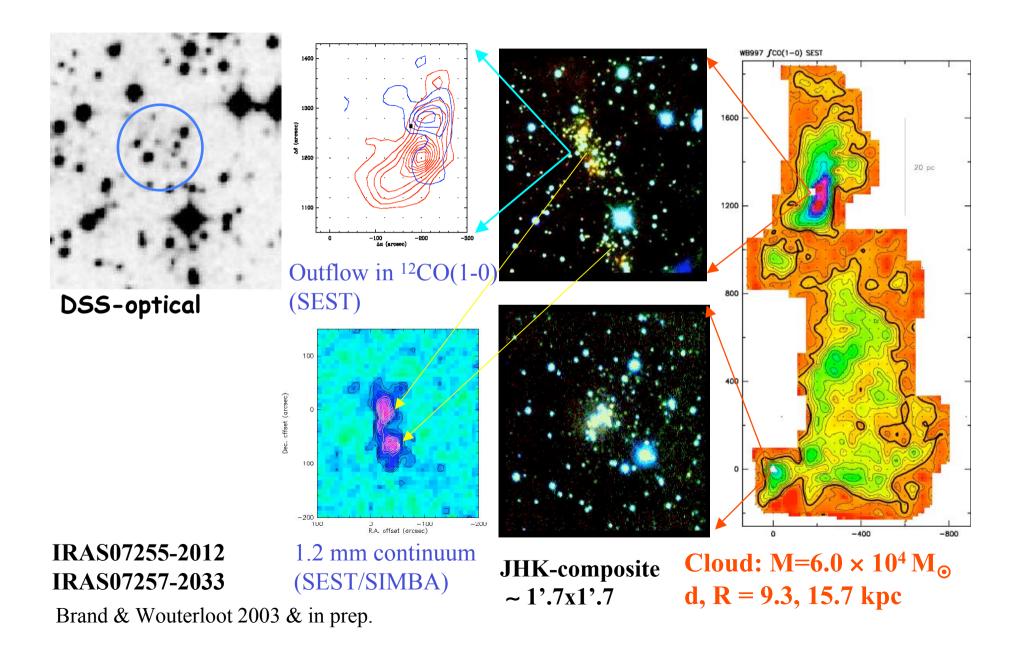
Brand & Wouterloot 1995

#### Molecular clouds & star formation



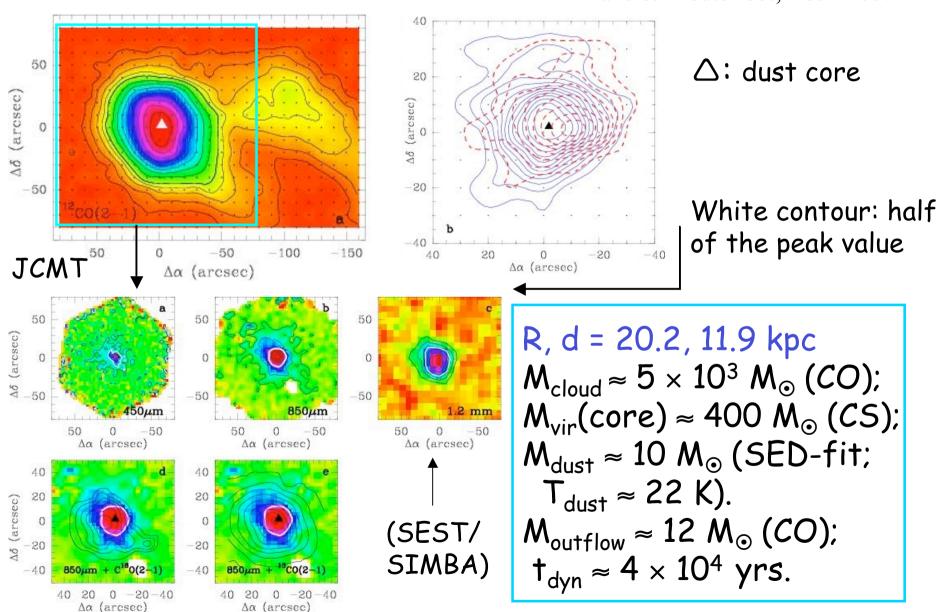

#### Molecular clouds & star formation



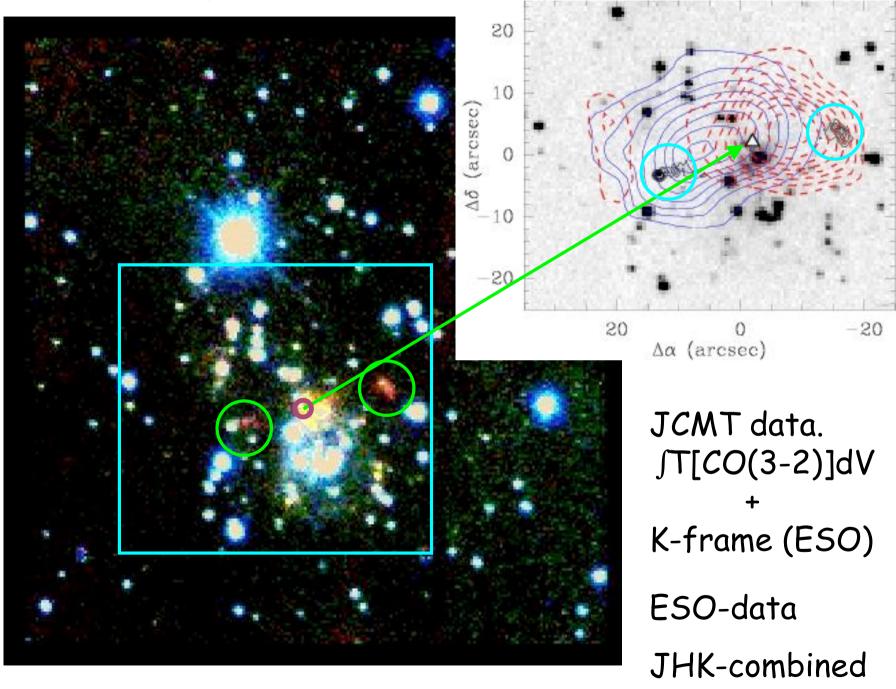

Gaseous Pillars · M16 HST · WFPC2 PRC95-44a · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

**HST: NGC3603** 

# Star formation sites in outer Galaxy

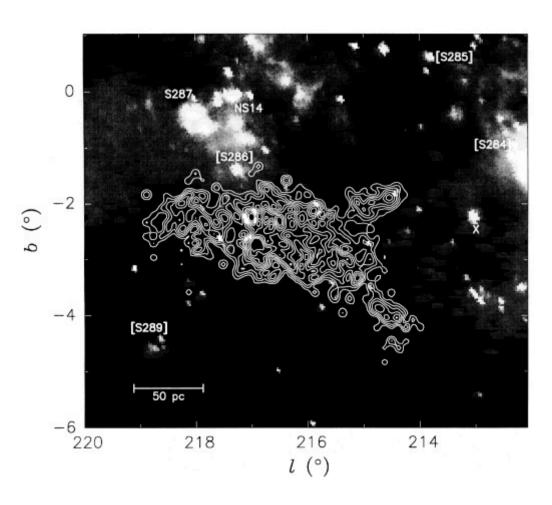



#### **Embedded clusters I**




#### **Embedded clusters II**

Brand & Wouterloot, A&A 2007



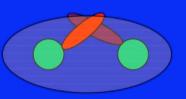

Brand & Wouterloot, A&A 2007



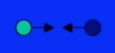
#### A cloud without star formation

G216-2.5: "Maddalena's Cloud"




$$L_{\rm IR}/M_{\rm cloud} < 0.07 L_{\odot}/M_{\odot}$$

while typically  $L_{IR}/M_{cloud} \sim 1~L_{\odot}/M_{\odot}$ 


# DERIVING FUNDAMENTAL PROPERTIES

# Typical energies involved in molecular transitions

• Electronic transitions

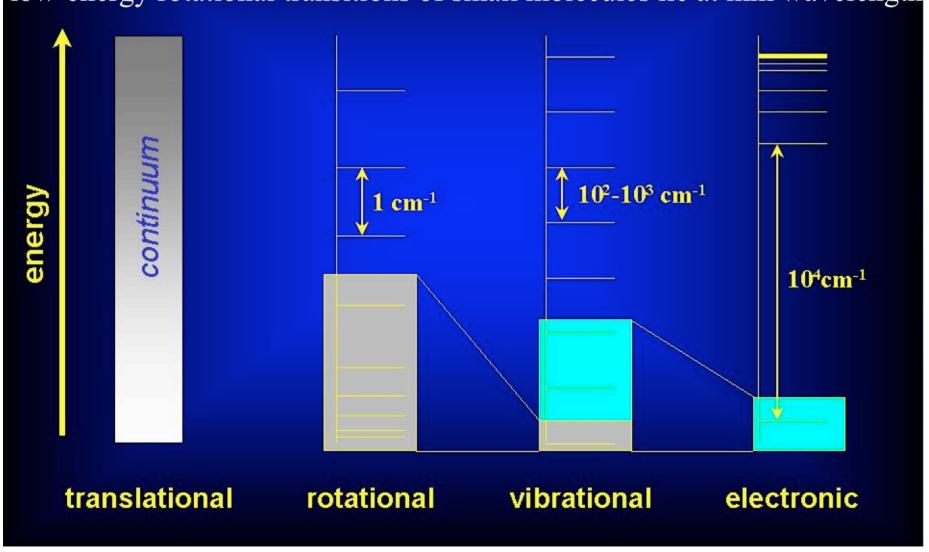


Vibrational transitions

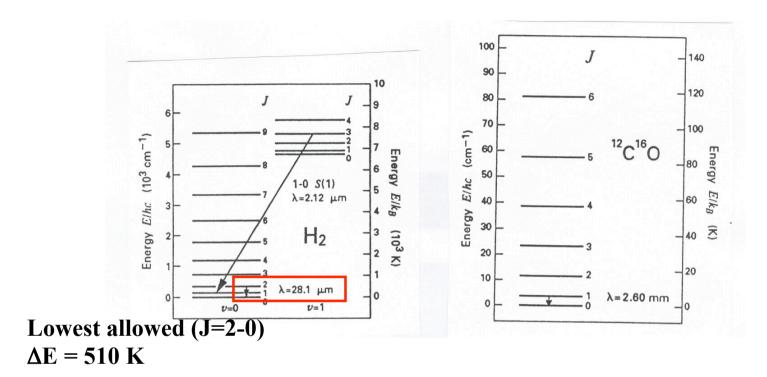


stretching

bending


Rotational transitions

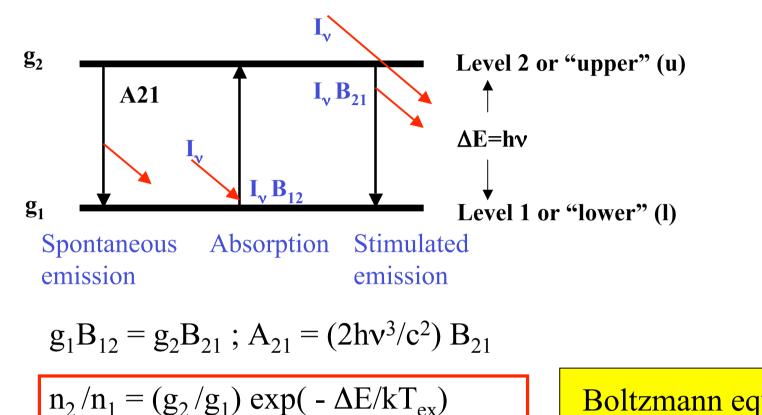





# energy level separations

low-energy rotational transitions of small molecules lie at mm wavelength




### Observing molecular clouds at large



H<sub>2</sub> smallest diatomic molecule: widely-spaced energy levels Even lowest excited rot. levels too far above ground state to be easily populated at normal molecular cloud T. no dipole moment, hence quadrupole radiation (slow)

CO: more closely-spaced energy levels; easily populated also at low T

#### Two-level system



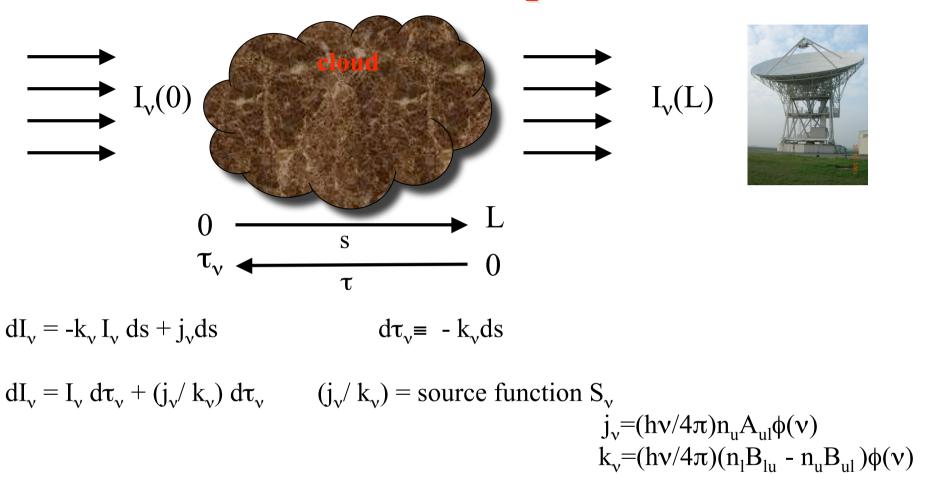
Boltzmann equation

Statistical equilibrium: in=out, regardless of process:

$$dn_1/dt = (A_{21} + IB_{21} + C_{21})n_2 - (IB_{12} + C_{12})n_1 = 0$$
 for each level

Example: CO. In molecular cloud, excitation J=1 level through collisions with  $H_2$ .

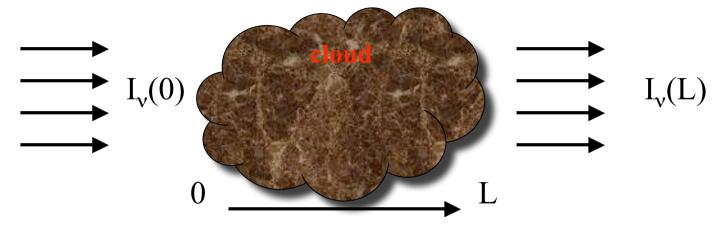
If  $n_{tot}$  low, each upward transition followed by spontaneous emission of photon (rate =  $n_1 A_{10}$ ).


If  $n_{tot}$  high, excited CO loses energy in collisions with  $H_2$ , without emission photon. Two regimes are separated at critical density  $A_{10}/\gamma_{10} = 3 \times 10^3 \text{ cm}^{-3}$ .

$$n_1/n_0 = (g_1/g_0) \exp(-\Delta E/kT_{ex})$$

$$n_{tot} << n_{crit} : n_1/n_0 \text{ small and } \propto n_{tot}, T_{ex} < T_{kin}$$
  
 $n_{tot} >> n_{crit} : CO \text{ in LTE and } T_{ex} = T_{kin}$ 

NH<sub>3</sub>(1,1) 
$$n_{crit} = 1.9 \text{ x } 10^4 \text{ cm}^{-3}.$$
  
CS  $n_{crit} = 4.2 \text{ x } 10^5 \text{ cm}^{-3}.$   
H<sub>2</sub>O (thermal emission)  $n_{crit} = 1.7 \text{ x } 10^7 \text{ cm}^{-3}.$ 


# Radiation transport I



TE at temperature T:  $S_v = B_v(T_{ex})$ : Planck function. Then:

$$I_{v} = I_{v} (0)e^{-\tau_{v}} + B_{v} (T_{ex})(1 - e^{-\tau_{v}})$$

### **Radiation transport II**



So we have:  $I_v = I_v (0)e^{-\tau_v} + B_v (T_{ex})(1 - e^{-\tau_v})$ 

Define  $T_A(v) = I_v / [2kv^2 c^{-2}]$ ,  $T_A(0) = T_{bg}$ , and define  $J_v(T) = (hv/k)(e^{hv/kT} - 1)^{-1}$  (Note: in Rayleigh-Jeans limit hv/kT << 1 and  $J_v(T) = T$ )

Then: 
$$T_A = J(T_{ex}) (1 - e^{-\tau_V}) + J(T_{bg}) e^{-\tau_V}$$
 Detection

**Detection equation** 

in Rayleigh-Jeans limit:  $T_A = T_{ex} (1 - e^{-\tau_V}) + T_{bg} e^{-\tau_V}$ In practice one measures  $\Delta T_A = T_A - T_{bg} (ON - OFF) = (T_{ex} - T_{bg}) (1 - e^{-\tau_V})$ 

- 1)  $\tau_v \ll 1$ :  $\Delta T_A \approx T \tau_v$  measure column density. All photons escape.
- 2)  $\tau_v \gg 1$ :  $\Delta T_A \approx T$  measure kinetic temperature, but independent of col. dens. Only photons at cloud surface  $(\tau_v \le 1)$  escape.

# T<sub>ex</sub>, τ, and column density in LTE

For an optically thick line, e.g. CO(1-0):  $\tau_v \gg 1$ ; the detection equation yields:

$$T_{ex} = (hv/k) \ln^{-1}(hv/k [T_A + J(T_{bg})]^{-1} + 1)$$
  
= 5.532 \ln^{-1}(5.532[T\_A + 0.818]^{-1} + 1)

For an optically thin line, e.g.  $^{13}CO(1-0)$ :  $\tau_v \ll 1$ ; it follows that:

$$\tau_{v} = -\ln[1 - T_{A}/(J(T_{ex}) - J(T_{bg}))]^{-1}$$

Column density – derived from transition between levels J and J-1. Detection equation:  $T_A = J(T_{ex}) (1 - e^{-\tau_v}) + J(T_{bg}) e^{-\tau_v}$  and  $\tau_v \ll 1$ , solve for  $\tau_v$ . From definition of  $T_{ex}$ , the definitions of the Einstein-coefficients, the equation for the absorption coefficient, and the definition of  $\tau$ 

$$N_{tot} = \left(\frac{3h}{8\pi^{3}\mu^{2}}\right) \left(\frac{Z}{J}\right) e^{\frac{h\nu}{kT_{ex}}} \left[1 - e^{-\frac{h\nu}{kT_{ex}}}\right]^{-1} \left[J(T_{ex}) - J(T_{bg})\right] \int T_{A} d\nu$$

with Z the partition function (linking  $N_1$  to  $N_{tot}$ ).

or: 
$$N_{tot} = f(T_{ex}) \int T_A dv$$

# **Total column density**

$$N_{tot} = f(T_{ex}) \int T_A dv$$

For  ${}^{13}CO(1-0)$  and  $C^{18}O(1-0)$  and  $T_{ex} \approx 5 - 20$  K:

$$f(T_{ex}) \approx (1.1 \pm 0.2) \times 10^{15} \,\text{cm}^{-2} / (\text{Kkm/s})$$

Hence:

$$N_{tot} = (1.1 \pm 0.2) \times 10^{15} \int T_A dv \text{ cm}^{-2} \Rightarrow \text{Mass!}$$

If  $\tau_v \le 2$  then correction factor  $\tau_0 / [1 - \exp(-\tau_0)]$ , with  $\tau_0$  the opt. depth at line center  $\tau_0 = -\ln(1-1/R)$  and  $R = T_A(^{12}CO) / T_A(^{13}CO)$ .

Therefore:

$$N_{tot} = (1.1 \pm 0.2) \times 10^{15} \times \tau_0 / [1 - \exp(-\tau_0)] \times \int T_A dv \text{ cm}^{-2}$$

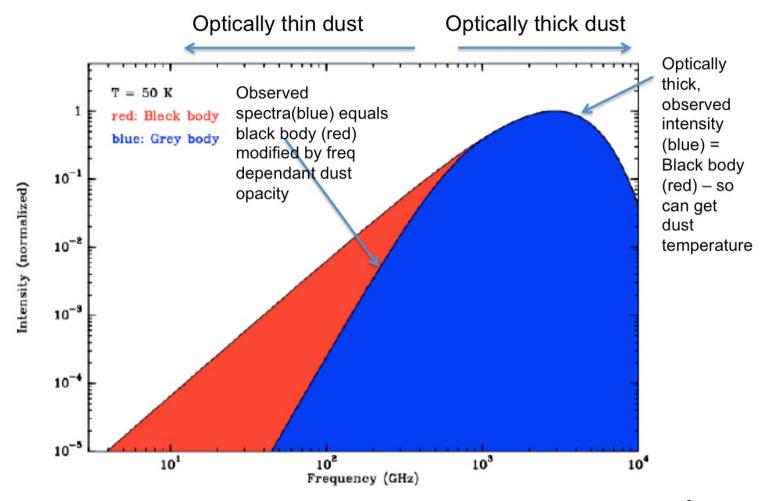
Mass follows via abundances:  $N(^{12}CO)/N(^{13}CO) \sim 90$  and  $N(^{12}CO)/N(H_2) \sim 1 \times 10^{-4}$ 

#### Typical medium Temperature

Table 2. Parameters of the commonly observed short cm/mm molecular lines

| Chemical <sup>a</sup><br>formula | Molecule<br>name     | Transition                     | $ u/\mathrm{GHz} $ | K <sub>b</sub> /K <sup>b</sup> | $A_{ij}/\mathrm{s}^{-1^c}$ |
|----------------------------------|----------------------|--------------------------------|--------------------|--------------------------------|----------------------------|
| H <sub>2</sub> O                 | ortho-water*         | $J_{K_aK_c} = 6_{16} - 5_{23}$ | 22.235253          | 640                            | 1.9 ×10 <sup>-9</sup>      |
| $NH_3$                           | para-ammonia         | (J, K) = (1, 1) - (1, 1)       | 23.694506          | 23                             | $1.7 \times 10^{-7}$       |
| $NH_3$                           | para-ammonia         | (J,K) = (2,2) - (2,2)          | 23.722634          | 64                             | $2.2 \times 10^{-7}$       |
| $NH_3$                           | ortho-ammonia        | (J, K) = (3, 3) - (3, 3)       | 23.870130          | 122                            | $2.5 \times 10^{-7}$       |
| SiO                              | silicon monoxide*    | J = 1 - 0, v = 2               | 42.820587          | 3512                           | $3.0 \times 10^{-6}$       |
| SiO                              | silicon monoxide*    | J = 1 - 0, v = 1               | 43.122080          | 1770                           | $3.0 \times 10^{-6}$       |
| SiO                              | silicon monoxide     | J = 1 - 0, v = 0               | 43.423858          | 2.1                            | $3.0 \times 10^{-6}$       |
| CS                               | carbon monosulfide   | J = 1 - 0                      | 48.990964          | 2.4                            | $1.8 \times 10^{-6}$       |
| DCO <sup>+</sup>                 | deuterated formylium | J = 1 - 0                      | 72.039331          | 3.5                            | $2.2 \times 10^{-5}$       |
| SiO                              | silicon monoxide*    | J = 2 - 1, v = 2               | 85.640456          | 3516                           | $2.0 \times 10^{-5}$       |
| SiO                              | silicon monoxide*    | J = 2 - 1, v = 1               | 86.243442          | 1774                           | $2.0 \times 10^{-5}$       |
| $H^{13}CO^{+}$                   | formylium            | J = 1 - 0                      | 86.754294          | 4.2                            | $3.9 \times 10^{-5}$       |
| SiO                              | silicon monoxide     | J = 2 - 1, v = 0               | 86.846998          | 6.2                            | $2.0 \times 10^{-5}$       |
| HCN                              | hydrogen cyanide     | J = 1 - 0, F = 2 - 1           | 88.631847          | 4.3                            | $2.4 \times 10^{-5}$       |
| HCO+                             | formylium            | J = 1 - 0                      | 89.188518          | 4.3                            | $4.2 \times 10^{-5}$       |
| HNC                              | hydrogen isocyanide  | J = 1 - 0, F = 2 - 1           | 90.663574          | 4.3                            | $2.7 \times 10^{-5}$       |
| $N_2H^+$                         | diazenylium          | $J=1-0, F_1=2-1,$              |                    |                                |                            |
|                                  |                      | F = 3 - 2                      | 93.173809          | 4.3                            | $3.8 \times 10^{-5}$       |
| CS                               | carbon monosulfide   | J = 2 - 1                      | 97.980968          | 7.1                            | $2.2 \times 10^{-5}$       |
| C18O                             | carbon monoxide      | J = 1 - 0                      | 109.782182         | 5.3                            | $6.5 \times 10^{-8}$       |
| <sup>13</sup> CO                 | carbon monoxide      | J = 1 - 0                      | 110.201370         | 5.3                            | $6.5 \times 10^{-8}$       |
| CO                               | carbon monoxide      | J = 1 - 0                      | 115.271203         | 5.5                            | $7.4 \times 10^{-8}$       |
| $H_2^{13}CO$                     | ortho-formaldehyde   | $J_{K_aK_c} = 2_{12} - 1_{11}$ | 137.449959         | 22                             | $5.3 \times 10^{-5}$       |
| $H_2CO$                          | ortho-formaldehyde   | $J_{K_aK_c} = 2_{12} - 1_{11}$ | 140.839518         | 22                             | $5.3 \times 10^{-5}$       |
| CS                               | carbon monosulfide   | J = 3 - 2                      | 146.969049         | 14.2                           | $6.1 \times 10^{-5}$       |
| C18O                             | carbon monoxide      | J = 2 - 1                      | 219.560319         | 15.9                           | $6.2 \times 10^{-7}$       |
| 13CO                             | carbon monoxide      | J = 2 - 1                      | 220.398714         | 15.9                           | $6.2 \times 10^{-7}$       |
| CO                               | carbon monoxide      | J = 2 - 1                      | 230.538001         | 16.6                           | $7.1 \times 10^{-7}$       |
| CS                               | carbon monosulfide   | J = 5 - 4                      | 244.935606         | 33.9                           | $3.0 \times 10^{-4}$       |
| HCN                              | hydrogen cyanide     | J = 3 - 2                      | 265.886432         | 25.5                           | $8.5 \times 10^{-4}$       |
| $HCO^{+}$                        | formylium            | J = 3 - 2                      | 267.557625         | 25.7                           | $1.4 \times 10^{-3}$       |
| HNC                              | hydrogen isocyanide  | J = 3 - 2                      | 271.981067         | 26.1                           | $9.2 \times 10^{-4}$       |

Critical density proportional to A


Choose molecular species depending on n, T of gas you want to probe. Also must consider expected strength of line, depends on intrinsic strength (prop to A) + chemical abundance. Must be strong enough to detect, but may want to avoid being optically thick

**TABLE 1** Properties of density probes

| Molecule  | Transition                  | ν<br>(GHz) | E <sub>up</sub> (K) | $n_c(10 \text{ K})$ (cm <sup>-3</sup> ) | $n_{eff}(10 \text{ K})$<br>(cm <sup>-3</sup> ) | $n_c(100 \text{ K})$<br>(cm <sup>-3</sup> ) | $\frac{n_{eff}(100 \text{ K})}{(\text{cm}^{-3})}$ |
|-----------|-----------------------------|------------|---------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------|---------------------------------------------------|
| CS        | $J=1 \rightarrow 0$         | 49.0       | 2.4                 | $4.6 \times 10^{4}$                     | $7.0 \times 10^{3}$                            | $6.2 \times 10^{4}$                         | $2.2 \times 10^{3}$                               |
| CS        | $J=2 \rightarrow 1$         | 98.0       | 7.1                 | $3.0 \times 10^5$                       | $1.8\times10^4$                                | $3.9 \times 10^5$                           | $4.1 \times 10^3$                                 |
| CS        | $J=3 \rightarrow 2$         | 147.0      | 14                  | $1.3\times10^6$                         | $7.0 \times 10^4$                              | $1.4\times10^6$                             | $1.0\times10^4$                                   |
| CS        | $J = 5 \rightarrow 4$       | 244.9      | 35                  | $8.8 \times 10^6$                       | $2.2 \times 10^6$                              | $6.9 \times 10^6$                           | $6.0 \times 10^{4}$                               |
| CS        | $J = 7 \rightarrow 6$       | 342.9      | 66                  | $2.8\times10^7$                         |                                                | $2.0\times10^7$                             | $2.6 \times 10^5$                                 |
| CS        | $J=10 \rightarrow 9$        | 489.8      | 129                 | $1.2\times10^{8}$                       |                                                | $6.2 \times 10^7$                           | $1.7 \times 10^6$                                 |
| $HCO^{+}$ | $J=1 \rightarrow 0$         | 89.2       | 4.3                 | $1.7\times10^5$                         | $2.4 \times 10^3$                              | $1.9 \times 10^5$                           | $5.6 \times 10^2$                                 |
| $HCO^+$   | $J = 3 \rightarrow 2$       | 267.6      | 26                  | $4.2\times10^6$                         | $6.3 \times 10^4$                              | $3.3\times10^6$                             | $3.6 \times 10^3$                                 |
| $HCO^+$   | $J=4 \rightarrow 3$         | 356.7      | 43                  | $9.7 \times 10^6$                       | $5.0 \times 10^5$                              | $7.8 \times 10^6$                           | $1.0 \times 10^{4}$                               |
| HCN       | $J=1 \rightarrow 0$         | 88.6       | 4.3                 | $2.6\times10^6$                         | $2.9\times10^4$                                | $4.5 \times 10^6$                           | $5.1 \times 10^3$                                 |
| HCN       | $J = 3 \rightarrow 2$       | 265.9      | 26                  | $7.8 \times 10^7$                       | $7.0\times10^5$                                | $6.8 \times 10^7$                           | $3.6 \times 10^{4}$                               |
| HCN       | $J = 4 \rightarrow 3$       | 354.5      | 43                  | $1.5\times10^{8}$                       | $6.0 \times 10^6$                              | $1.6 \times 10^8$                           | $1.0 \times 10^5$                                 |
| $H_2CO$   | $2_{12} \rightarrow 1_{11}$ | 140.8      | 6.8                 | $1.1\times10^6$                         | $6.0 \times 10^4$                              | $1.6\times10^6$                             | $1.5 \times 10^4$                                 |
| $H_2CO$   | $3_{13} \rightarrow 2_{12}$ | 211.2      | 17                  | $5.6 \times 10^6$                       | $3.2 \times 10^5$                              | $6.0 \times 10^6$                           | $4.0 \times 10^{4}$                               |
| $H_2CO$   | $4_{14} \rightarrow 3_{13}$ | 281.5      | 30                  | $9.7\times10^6$                         | $2.2\times10^6$                                | $1.2\times10^7$                             | $1.0\times10^5$                                   |
| $H_2CO$   | $5_{15} \rightarrow 4_{14}$ | 351.8      | 47                  | $2.6 \times 10^7$                       |                                                | $2.5\times10^7$                             | $2.0 \times 10^5$                                 |
| $NH_3$    | (1,1)inv                    | 23.7       | 1.1                 | $1.8\times10^3$                         | $1.2 \times 10^3$                              | $2.1\times10^3$                             | $7.0\times10^2$                                   |
| $NH_3$    | (2,2)inv                    | 23.7       | 42                  | $2.1\times10^3$                         | $3.6 \times 10^4$                              | $2.1\times10^3$                             | $4.3 \times 10^2$                                 |

... means no value; inv means inversion transition.

Evans 1999, Ann. Rev. A&A 37



 $\lambda \sim 100\text{-}500~\mu m$  good diagnostic  $T_d$   $\lambda \sim 800~\mu m$  - 3 mm good tracer of mass

$$M_d = \frac{S_v d^2}{B_v(T_d) \kappa_d}$$

$$\kappa_d = \kappa_0 \left(\frac{v}{230 GHz}\right)^{\beta} cm^2 g^{-1}$$

# Deriving N(H<sub>2</sub>), total mass

#### 1. Lines (Planck & Boltzmann)

Detection eqn., LTE, 
$$\tau(^{12}\text{CO}) \gg 1 \iff T_{\text{ex}}$$
,  $\tau(^{13}\text{CO}) \ll 1$   
 $N(^{13}\text{CO}) = f(\tau_{13}, T_{\text{ex}}, \Delta v_{13}) + [H_2]/[^{13}\text{CO}] = .... \Rightarrow N(H_2)_{\text{LTE}}$   
 $^{12}\text{C/H}, ^{12}\text{C/}^{13}\text{C} \text{ gradients} \Rightarrow [H_2]/[^{13}\text{CO}] = f(R)$ 

Non-LTE transitions: LVG model (full radiation transport eqns.)

#### 2. Lines (empirical)

$$N(H_2)/\int T_{12} dv = X \Rightarrow N(H_2)_{Wco}$$

X =constant or f(R)? Works better for ensembles than for individual clouds

#### 3. Virial theorem

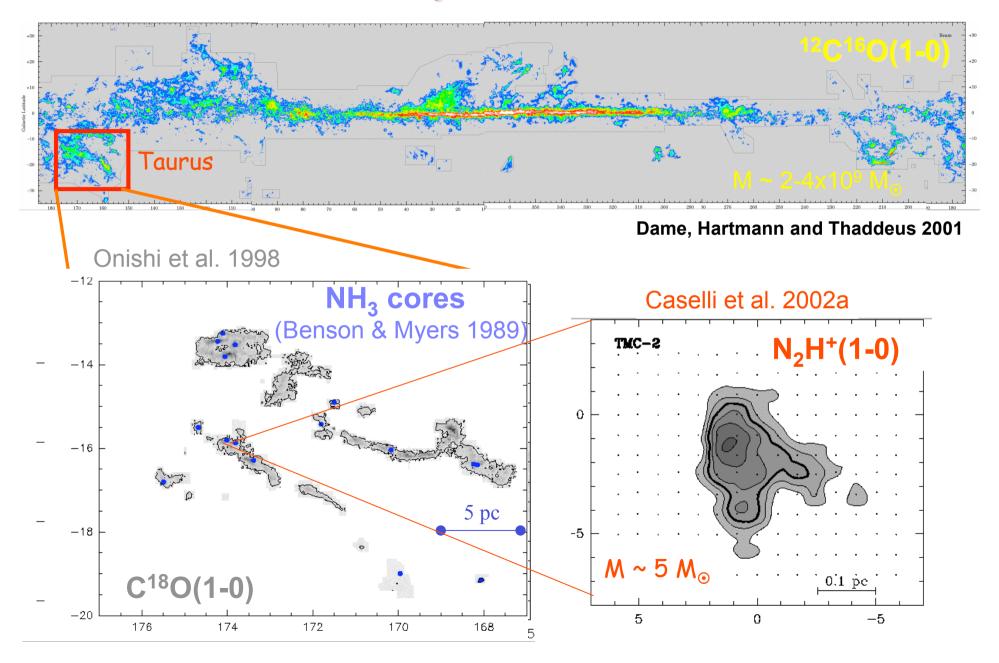
Cloud radius (r), linewidth ( $\Delta v$ ), assumptions about density distribution. For spherical cloud, n  $\propto$  r  $^{-2} \Rightarrow M_{vir} = 126$  r  $\Delta v^2$ 

Exclude non-bound motions (e.g. outflows); actual density distribution?

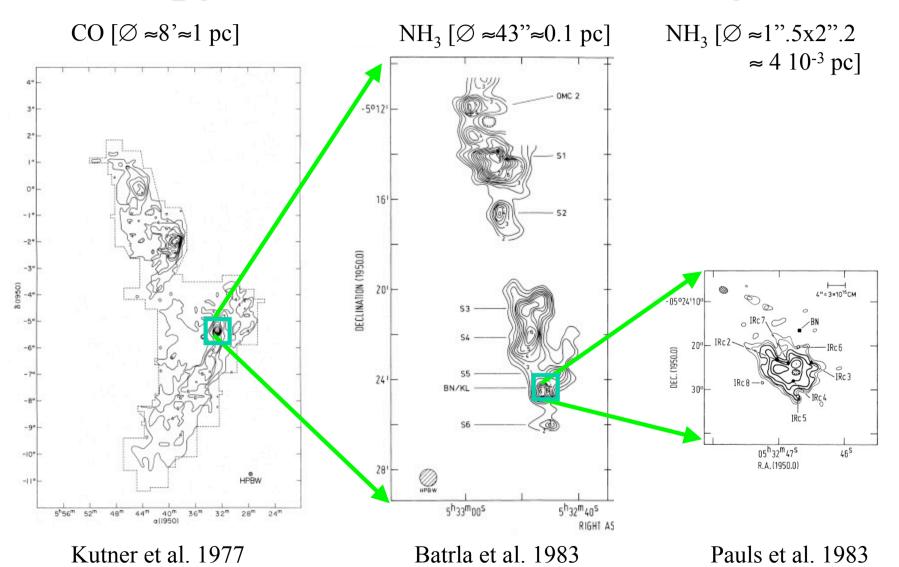
#### 4. Dust continuum

$$\mathbf{M} = (\mathbf{g}\mathbf{S}_{\mathbf{v}}\mathbf{d}^2)/\kappa_{\mathbf{v}}\mathbf{B}(\mathbf{T}_{\mathrm{dust}})$$

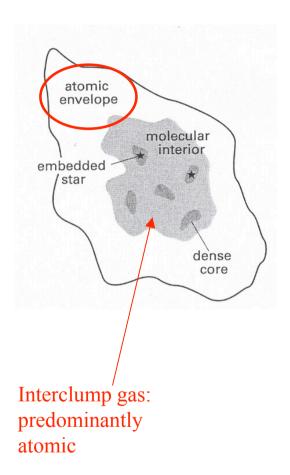
**κ**<sub>v</sub>, T-structure, gas-to-dust ratio (g) uncertain


# Results of molecular cloud mapping

| Type    | R      | n                   | M                      | ΔV      | T     | Cores & stars         |
|---------|--------|---------------------|------------------------|---------|-------|-----------------------|
|         | (pc)   | (cm <sup>-3</sup> ) | $(\mathrm{M}_{\odot})$ | (km/s)  | (K)   |                       |
| Diffuse | 0.3-3  | 30-500              | 0.5-10 <sup>2</sup>    | 0.7-1.5 | 10?   | Low-mass              |
| Dark    | 3-10   | 102-3               | 103-4                  | 1-3     | 10    | Low-mass              |
| Giant   | 20-100 | 10-300              | 105-6                  | 5-15    | 10-20 | High-mass (+Low-mass) |


Total molecular mass in Galaxy ~ 2-4 x  $10^9 \,\mathrm{M}_{\odot} \approx \mathrm{M(HI)}$ 

# CLUMPY STRUCTURE AND MASS DISTRIBUTIONS


# Our Galaxy at 115 GHz



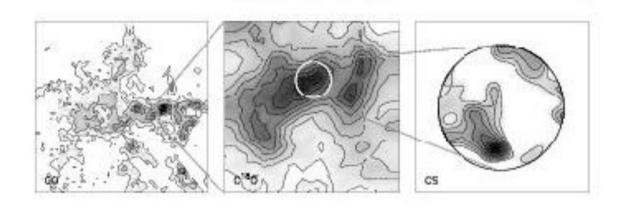
# **Clumpy structure - Self-similarity**



#### **Cloud structure**



Self-similar, fractal structure


clump,

Cloud,

core

CS.

Figure 4. Hierarchical cloud structure. The three panels show a representative view from cloud to clump to core. The bulk of the molecular gas (cloud; left panel) is best seen in CO which, although optically thick, faithfully outlines the location of the H<sub>2</sub>. Internal structure (clumps; middle panel) is observed at higher resolution in an optically thin line such as C <sup>16</sup> O. With a higher density tracer such as C S, cores (right panel) stand out. The observations here are of the Rosette molecular cloud and are respectively, Bell Labs (90"), FCRAO data (50"), and BIMA data (10").



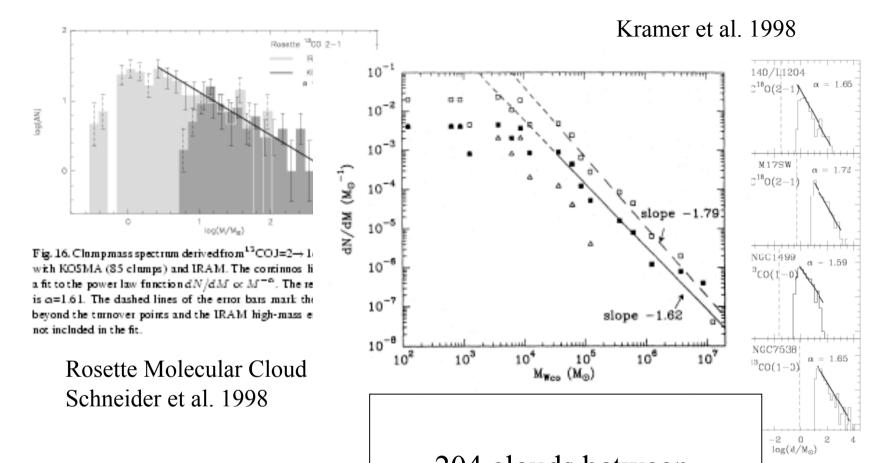
#### Clouds

D ≥ 10 pc  $n(H_2) \approx 10^2 - 10^3 \text{ cm}^{-3}$   $M \ge 10^4 \text{ M}_{\odot}$   $T \approx 10 \text{ K}$   $CO, ^{13}CO$  $N(CO)/N(H_2) \approx 10^{-4}$ 

#### clumps

 $D \approx 1 \text{ pc}$   $n(H_2) \approx 10^5 \text{ cm}^{-3}$   $M \approx 10^3 \text{ M}_{\odot}$   $T \approx 50 \text{ K}$   $CS, C^{34}S$  $N(CS)/N(H_2) \approx 10^{-8}$ 

#### cores


 $D \approx 0.1 \text{ pc}$   $n(H_2) \approx 10^7 \text{ cm}^{-3}$   $M \approx 10 \text{-} 10^3 \text{ M}_{\odot}$   $T \approx 100 \text{ K}$   $NH_3, CH_3CN$   $N(CH_3CN)/N(H_2) \approx 10^{-10}$ 

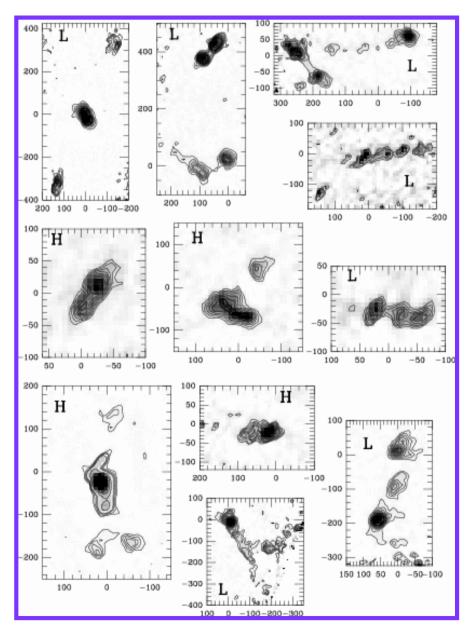
# Typical clump properties

(based on a study of the RMC – Rosette Molecular Cloud)

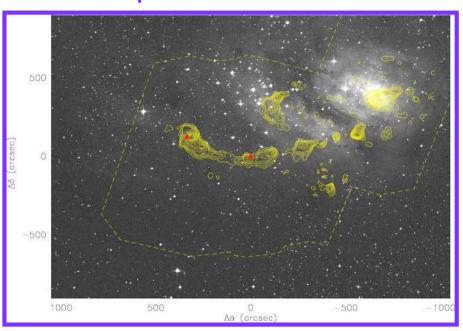
- 60-90% of H<sub>2</sub> in clumps
- <n> ~10 $^3$  cm $^{-3}$ ; <n $_{vol}$ > ~25 cm $^{-3}$ . Thus: volume filling factor ~ 2.5% Hence: n(interclump) ~ 2.5-12.5 cm $^{-3}$
- $-\Sigma(r) \propto r^{-1}$ , i.e.  $\rho(r) \propto r^{-2}$
- Mass spectrum dN/dM  $\propto$  M $^{\alpha}$ ,  $\alpha$  = -1.4 to -1.7 for M = 1-3000 M $_{\odot}$ . Idem for clouds as a whole

# Self-similarity – Clump mass distribution




Power-law mass distribution 10 Most clumps at low-mass end, clumps

204 clouds between R=2-25kpc: same slope!


Mass distribution of sample of GMCs has same slope

SS

#### Simba results 1



#### Multiple cores & chains



DSS + SIMBA (1.2-mm cont.)

AND: 95 pre-stellar or pre-cluster cores!

Beltran, Brand, Cesaroni et al. 2006

# Simba results 2: clump mass function

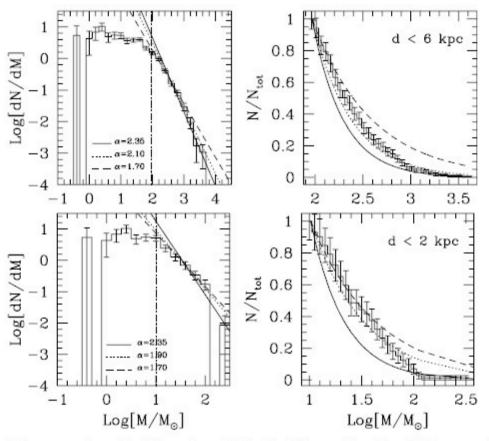
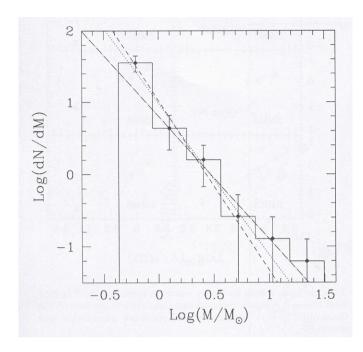
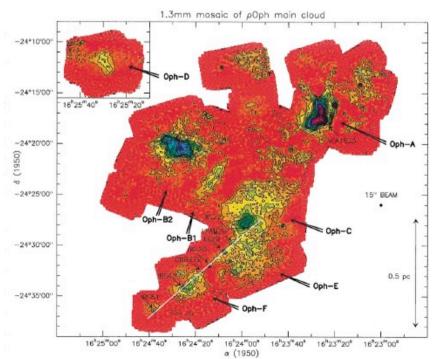
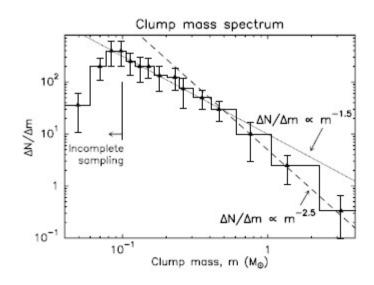




Fig. 10. Left top panel: the mass spectrum of the 1.2 mm clumps detected at a distance <6 kpc. The solid line represents the Salpeter IMF,  $dN/dM \propto M^{-2.35}$ ; the dotted line is a -2.1 power law, obtained from the least square fit to the data, and the dashed line is a -1.7 power law. The vertical dot-dashed line indicates the completeness limit at 6 kpc. Right top panel: the normalized cumulative mass distribution of clumps with masses above the completeness limit at 6 kpc. The solid, and dashed lines are the same as in the left panel, and the dotted line is a -1.9 power law, obtained from the least square fit to the data. Left bottom panel: same as above for clumps detected at a distance <2 kpc. The vertical dot-dashed line indicates the completeness limit at 2 kpc. Right bottom panel: same as above for clumps with masses above the completeness limit at 2 kpc.

Slope 10-100  $M_{\odot}$ : -(1.5-1.9); >100  $M_{\odot}$ : -2.1

Beltran, Brand, Cesaroni et al. 2006





#### Serpens: Testi & Sargent 1998

26 pre-stellar clumps Slope -2.1

#### IMF:

Salpeter: -2.5 for M= 1-10  $M_{\odot}$ . Miller-Scalo: -1.5 for M < 1  $M_{\odot}$ .



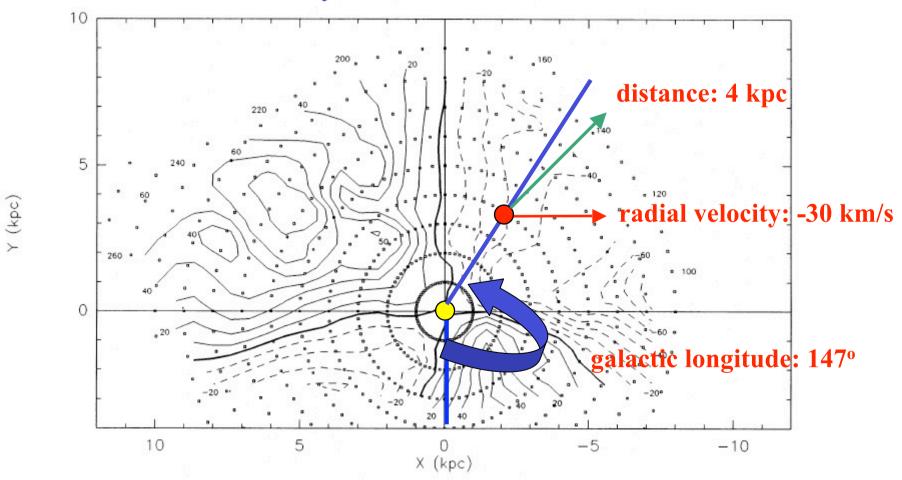


60 pre-stellar clumps in  $\rho$  Oph Slope -1.5 for M= 0.1-0.5  $M_{\odot}$ . -2.5 0.5-3  $M_{\odot}$ .

Ophiuchus: Motte et al. 1998

# Typical clump properties

(based on a study of the RMC – Rosette Molecular Cloud; Blitz et al.)


- 60-90% of H<sub>2</sub> in clumps
- <n> ~10 $^3$  cm $^{-3}$ ; <n $_{vol}$ > ~25 cm $^{-3}$ . Thus: volume filling factor ~ 2.5% Hence: n(interclump) ~ 2.5-12.5 cm $^{-3}$
- $-\Sigma(r) \propto r^{-1}$ , i.e.  $\rho(r) \propto r^{-2}$
- Mass spectrum dN/dM  $\propto$  M $^{\alpha}$ ,  $\alpha = -1.4$  to -1.7 for M = 1-3000 M $_{\odot}$ . Idem for clouds as a whole
- Most clumps not gravitationally bound, but most mass is in clumps that are. Yet clumps are not expanding: pressure-confinement
- Inside clump:  $P_{int}/k \sim 6\text{-}12 \times 10^4\,\text{Kcm}^{-3}$  (bulk gas motions) Inside GMC, due to gravity:  $P_{grav}/k \sim 8 \times 10^4\,\text{Kcm}^{-3}$   $P_{HI}/k \sim 10 \times 10^4\,\text{Kcm}^{-3}$ 
  - ⇒ clumps confined by interclumps gas (which is HI)

# MOLECULAR GAS KINEMATICS rotation curve and kinematic distances

# The observed velocity field

(Brand & Blitz 1993)

#### Radial velocity as a function of distance

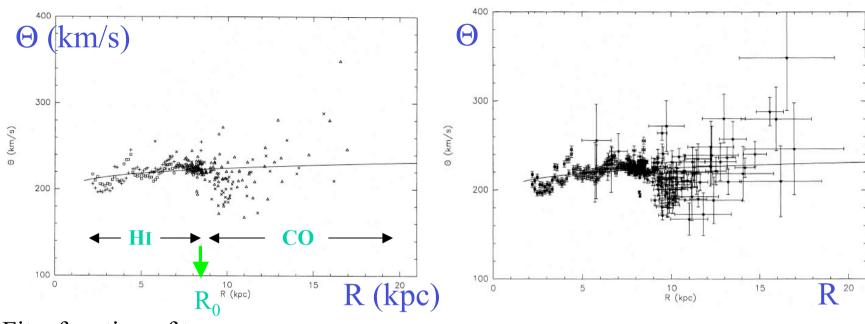


#### Kinematic distances I

Observed velocity field is useful to determine kinematic distances, but its range of use is limited (e.g., <2 kpc from Sun in inner Galaxy)

Therefore: construct the rotation curve ( $\Theta$  versus R)

Transform observed radial velocities and spectro-photometric distances into galactic rotation velocity  $\Theta$  and galactocentric distance R:


 $V_{lsr} = (\Theta R_0/R - \Theta_0) \sin l \cos b$  for circular rotation.  $\omega = \Theta / R$ : angular rotation velocity  $\Rightarrow V_{lsr} = R_0(\omega - \omega_0) \sin l \cos b \Rightarrow \omega = V_{lsr}/(R_0 \sin l \cos b) + \omega_0$ 

$$R = (d^2\cos^2 b + R_0^2 - 2 R_0 d \cos b \cos l)^{1/2}$$

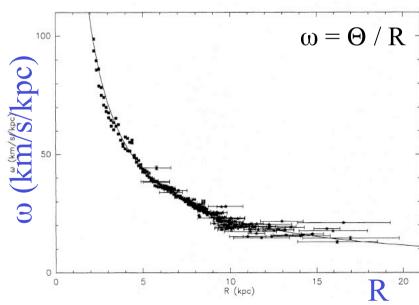
Advantage: get distances everywhere.

Disadvantage: in some regions erroneous because streaming motions are not included.

#### Rotation curve from HI and CO



Fit a function of type:


$$\omega/\omega_0 = a_1(R/R_0)^{a_2-1} + a_3(R/R_0)$$

Implying

$$\Theta/\Theta_0 = a_1(R/R_0)^{a_2} + a_3$$

$$a_1 = 1.0077, a_2 = 0.0394, a_3 = 0.00712$$

(Brand & Blitz 1993)



#### **Kinematic distances II**

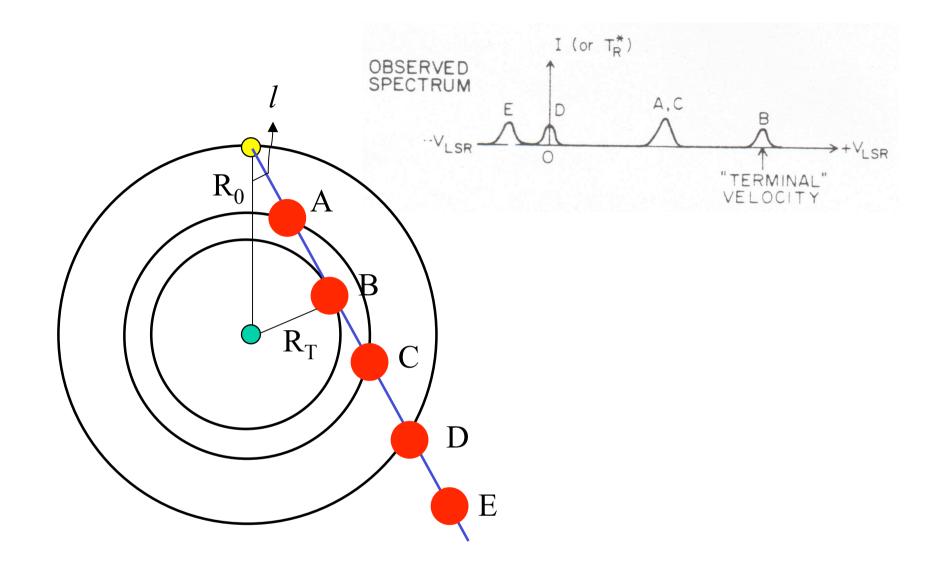
Rotation curve:  $\Theta = \Theta_0 (R/R_0)^a$  with  $\Theta_0 = 220$  km/s,  $R_0 = 8.5$  kpc

In general:  $V_{lsr} = R_0(\omega - \omega_0) \sin l \cos b$ , and  $\omega = \Theta/R$ .

It follows that:

$$R = ([(V_{lsr} / sinl cosb) + \Theta_0] / \Theta_0 R_0^{1-a})^{1/(a-1)}$$
 and

$$d = [R_0 \cos l \pm (R^2 - R_0^2 \sin^2 l)]^{0.5} / \cos b$$


For outer Galaxy: choose '+'

For inner Galaxy, there are 2 solutions: distance ambiguity!

# Distance ambiguity in inner Galaxy

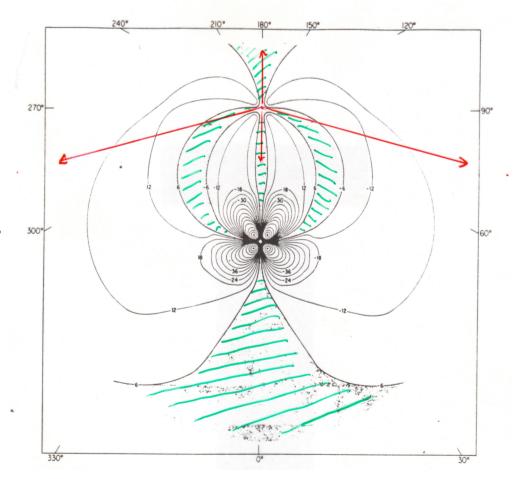


Nakanishi & Sofue 2003 PASJ

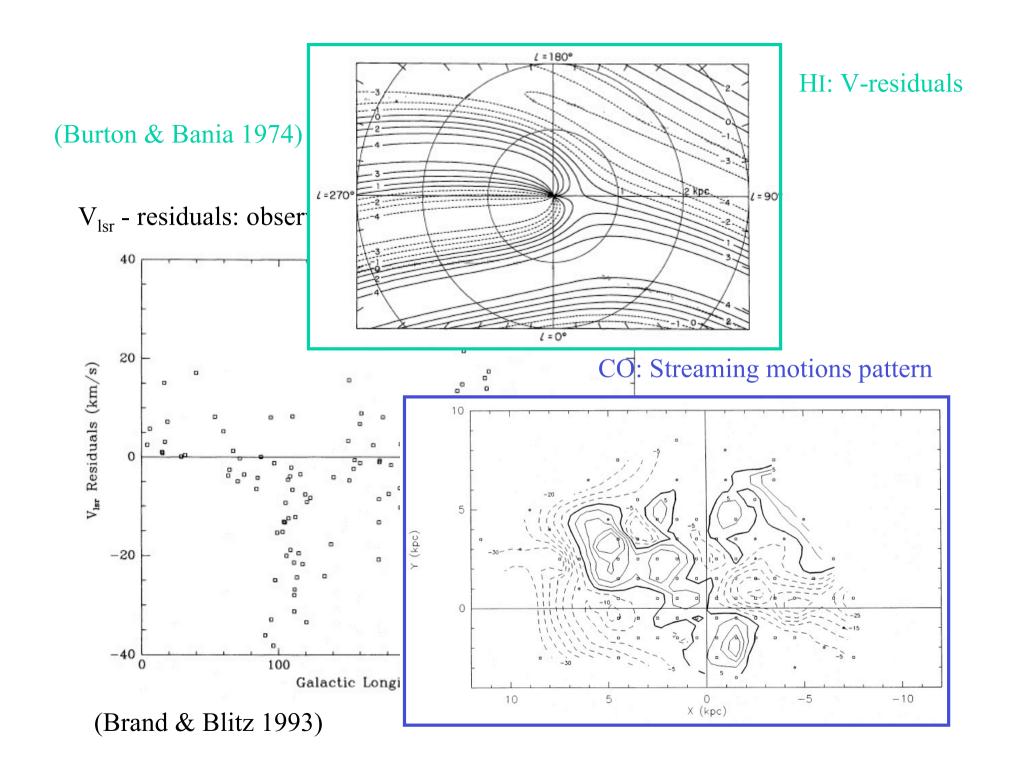


 $R_T = R_0 \sin l$ : subcentral (tangent) point. Maximum  $V_{lsr}$  long l.o.s.

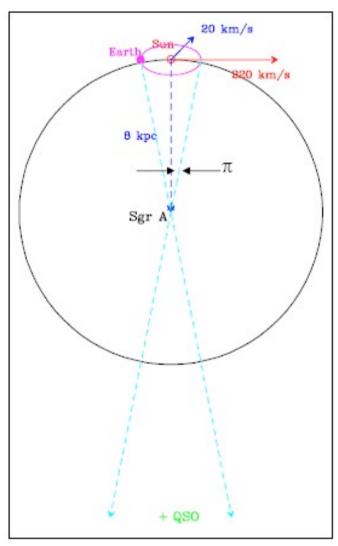
# Velocity crowding

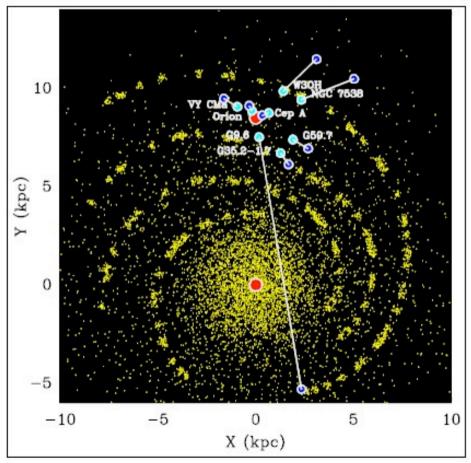

#### Contours of dV/dr

Arched in green:


 $dV/dr \le 6 \text{ km/s/kpc}$ 

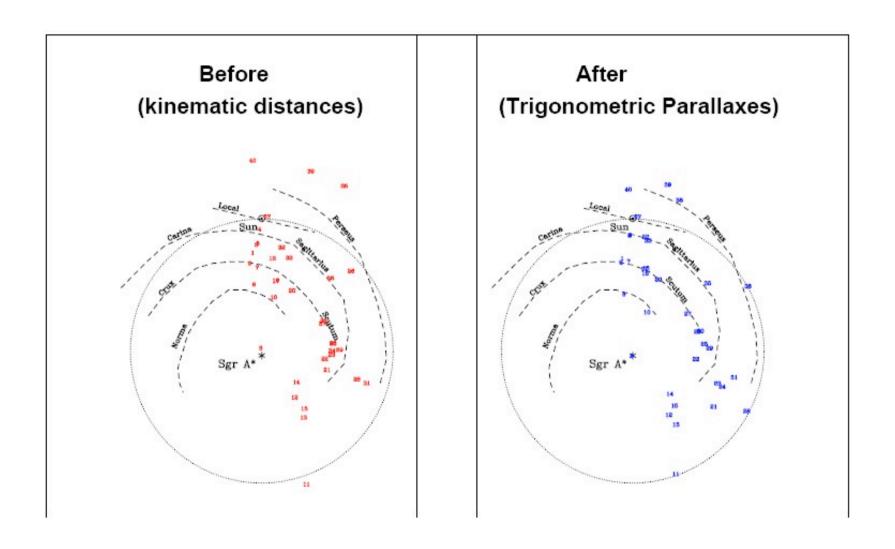



Artificial density structures




(Burton 1988)

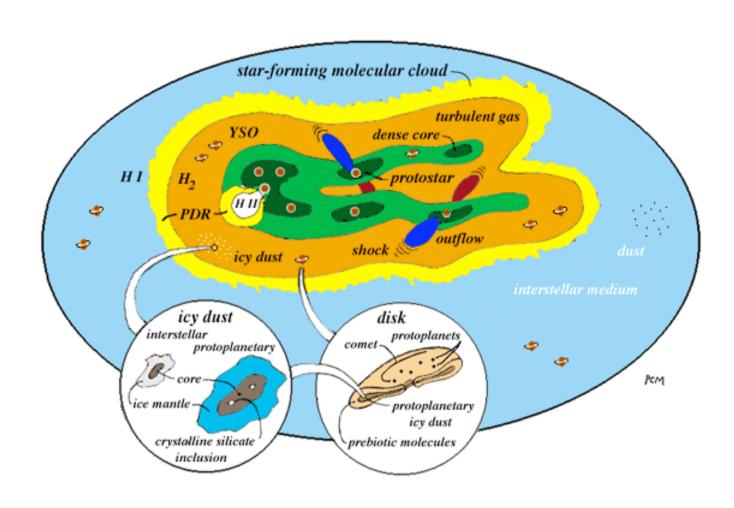



# Trigonometric parallax





(Reid – IAU242, 2007; ApJ 700, 137 2009)


# The new Galaxy



(Reid - IAU242, 2007; 2009)

#### **STAR FORMATION**

#### Star formation: in molecular clouds



#### Star formation catastrophe?

$$M_{cloud} \approx 10^{4\text{-}5} \, M_{\odot} \gg M_{Jeans} \approx 10^2 \, M_{\odot} \, \Rightarrow collapse$$
 on

free-fall timescale 
$$t_{\rm ff} \approx \sqrt{(3\pi/32G\rho)} \approx 10^6 \, \rm yrs.$$

On galactic scale:

SFR = 
$$M_{GMC}/t_{ff} \approx 10^9 \, M_{\odot}/10^6 \, yrs \approx 10^3 \, M_{\odot}$$
 /yr  $\approx 5 \, FR_{obs} \approx 3 \, M_{\odot}$  /yr

Clouds are prevented from total collapse!

# SFE: Star formation efficiency

TABLE 2 Star-formation efficiencies for nearby embedded clusters

| Cluster name | Core mass $(M_{\odot})$ | Stellar mass ( $M_{\odot}$ ) | SFE  | References               |
|--------------|-------------------------|------------------------------|------|--------------------------|
| Serpens      | 300                     | 27                           | 0.08 | Olmi & Testi 2002        |
| Rho Oph      | 550                     | 53                           | 0.09 | Wilking & Lada 1983      |
| NGC 1333     | 950                     | 79                           | 0.08 | Warin et al. 1996        |
| Mon R2       | 1000                    | 341                          | 0.25 | Wolf et al. 1990         |
| NGC 2024     | 430                     | 182                          | 0.33 | E.A. Lada et al. 1991a,b |
| NGC 2068     | 266                     | 113                          | 0.30 | E.A. Lada et al. 1991a,b |
| NGC 2071     | 456                     | 62                           | 0.12 | E.A. Lada et al. 1991a,b |

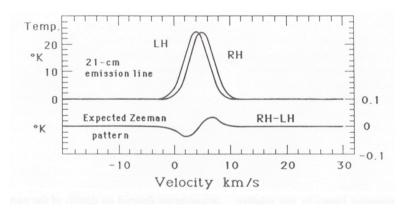
# **Cloud support**

Virial theorem:

2T+2U+W+M=0

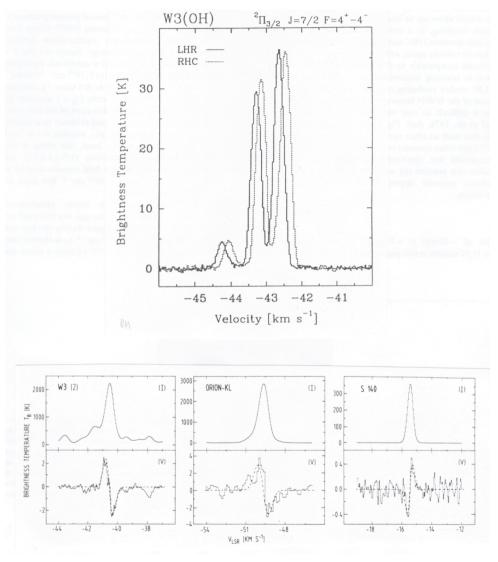
Gravitational energy

Thermal energy (random motions):  $U/W \approx 3 \times 10^{-3} \rightarrow irrelevant$ 


Magnetic field term: M/W = 0.3

Kinetic energy (bulk motions, mostly from clumps):  $T/W \approx 0.5$ 

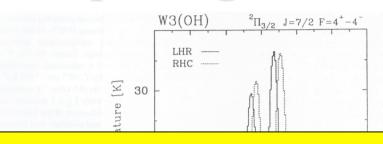
Clouds are supported by turbulence and magnetic fields


# **B-field: Zeeman splitting**

In presence of B-field, hyperfine splitting of levels is modified: spectral line splits in 2, centered on primary component, with opposing polarisations.



$$\frac{\Delta v_{\text{mag}}}{\Delta v_{\text{therm}}} \approx 10^{-3} \left(\frac{B}{\mu \text{G}}\right) \left(\frac{T_k}{10 \text{K}}\right)^{-1/2}$$


 $3.27 \text{ Hz/}\mu\text{G}$  OH @ 1665 MHz  $1.96 \text{ Hz/}\mu\text{G}$  OH @ 1665 MHz  $7.2 10^{-4} \text{ Hz/}\mu\text{G}$  NH<sub>3</sub> @ 22 GHz  $2.3 10^{-3} \text{ Hz/}\mu\text{G}$  H<sub>2</sub>O @ 22 GHz



Güsten et al. 1994

# **B-field: Zeeman splitting**

In presence of B-field, hyperfine splitting of levels is modified: spectral line splits in 2, centered on primary component, with opposing

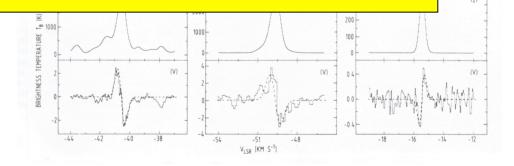


po]

#### **Measured values:**

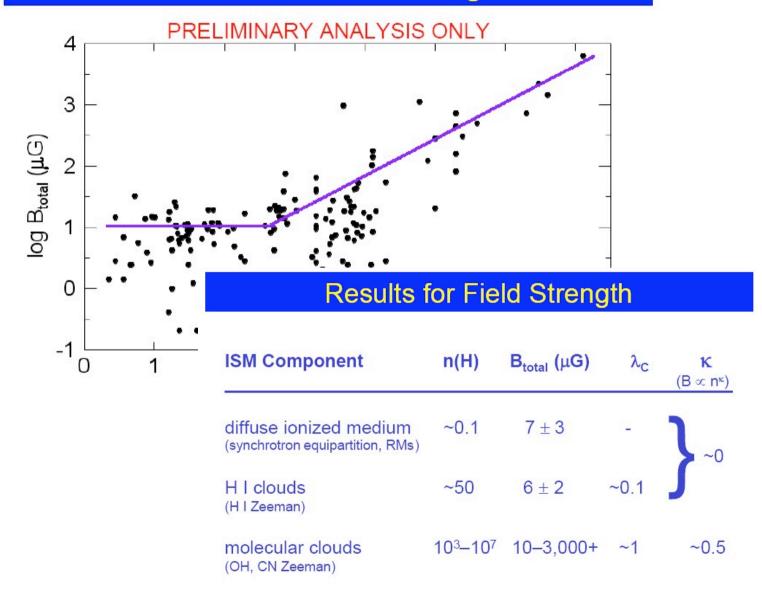
HI 21cm, OH 18cm: few μG (diffuse ISM; n<100 cm<sup>-3</sup>)

few μG (dark cloud envelopes; n~10<sup>3</sup> cm<sup>-3</sup>)


few μG (OH masing layers; n~10<sup>7-8</sup> cm<sup>-3</sup>)

50mG (maser spots; n~10<sup>10</sup> cm<sup>-3</sup>)

H<sub>2</sub>O 22GHz:

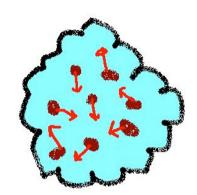

$$\frac{\Delta v_{\text{mag}}}{\Delta v_{\text{therm}}} \approx 10^{-3} \left(\frac{B}{\mu \text{G}}\right) \left(\frac{I_k}{10 \text{K}}\right)$$

 $3.27 \text{ Hz/}\mu\text{G}$  OH @ 1665 MHz  $1.96 \text{ Hz/}\mu\text{G}$  OH @ 1665 MHz  $7.2 10^{-4} \text{ Hz/}\mu\text{G}$  NH<sub>3</sub> @ 22 GHz  $2.3 10^{-3} \text{ Hz/}\mu\text{G}$  H<sub>2</sub>O @ 22 GHz



Güsten et al. 1994

#### Results for Field Strength




(Crutcher – IAU242, 2007)

# Clump stability

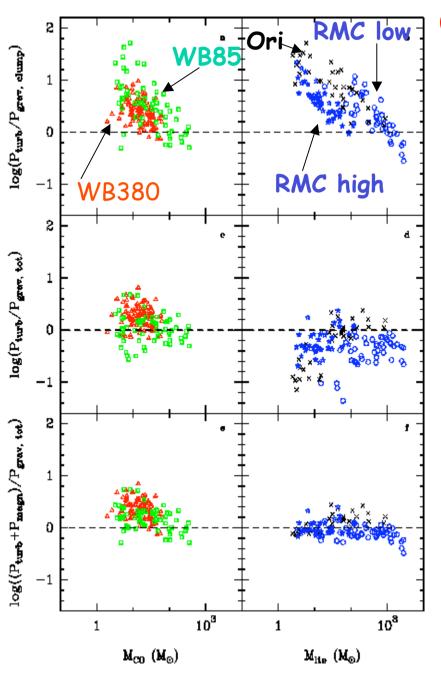
#### Forces working on clumps:

- Clump (self-) gravity
- Clump turbulence (and thermal pressure)
- Interclump pressure
- Magnetic fields



#### Clump virial theorem (e.g. Fleck 1988):

$$4\pi r^3 P = 3M_{CO}\sigma^2 - GM_{CO}^2/r + B^2/8\pi$$


#### Expressed in pressures:

$$P/k = \rho\sigma^2/k - GM_{CO}\rho/3rk + B^2/8\pi k$$

$$\mathbf{P}_{ext}/\mathbf{k} = \mathbf{P}_{turb}/\mathbf{k} + \mathbf{P}_{grav}/\mathbf{k} + \mathbf{P}_{magn}/\mathbf{k}$$

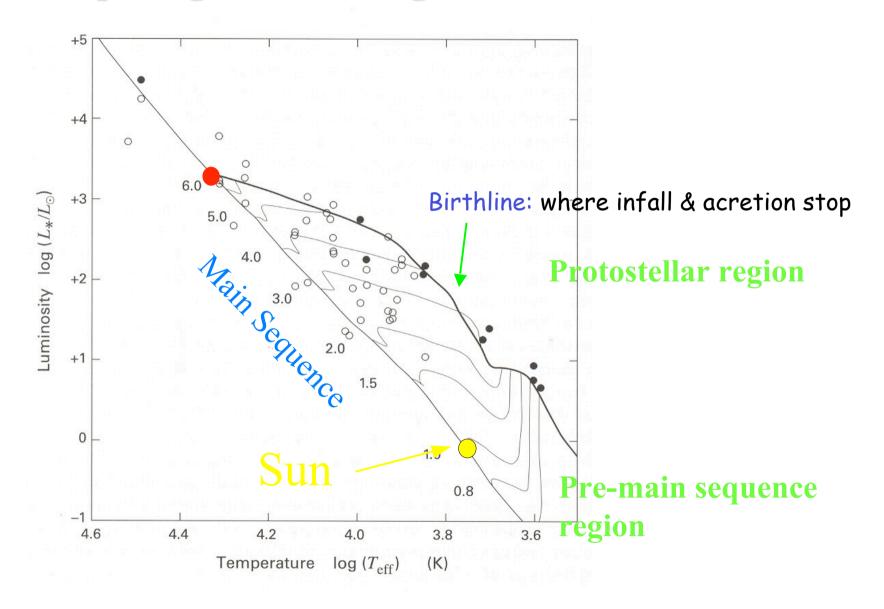
$$\begin{split} P_{\textit{turb}}/P_{\textit{grav}} &= \alpha = 126 \text{ r[pc] } \Delta v \text{[kms-1]}^2/M_{CO} = M_{\text{vir}}/M_{CO} \text{ : virial} \\ parameter \\ P_{\text{magn}}/k &= 2.9 \times 10^4 \text{ Kcm-3 for } 10 \mu\text{G} \end{split}$$

Interclump pressure (self-gravity GMC):  $P_{ext}/k = 1.7 \times 10^4 - 5.9 \times 10^4$  Kcm<sup>-3</sup>



# Clump pressure ratios

Turbulence & gravity


Turbulence & total gravity

Turbulence, total gravity & magnetic field pressure

Brand et al. 2001

#### Herzsprung-Russel diagram

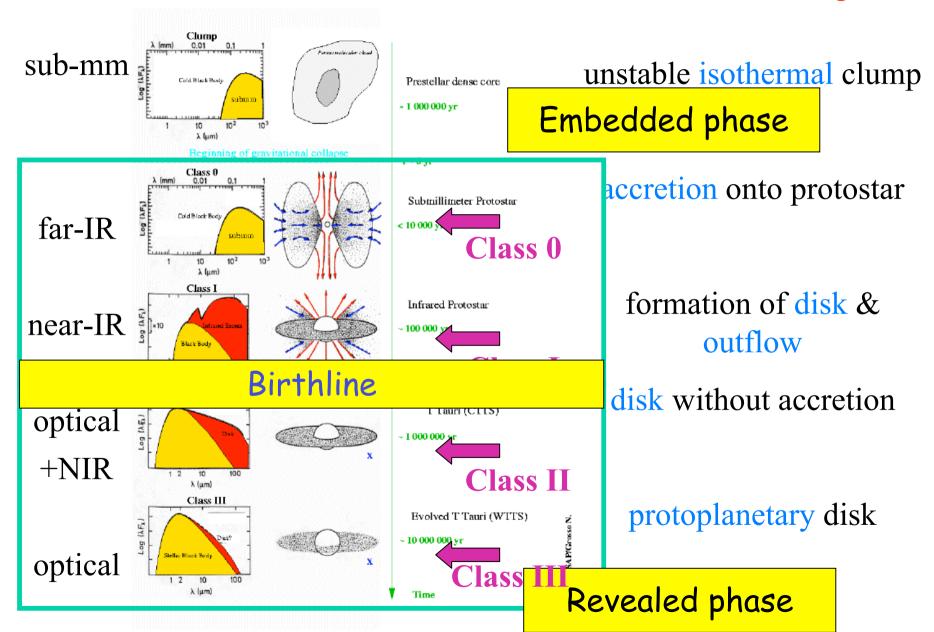
Palla & Stahler (1990)



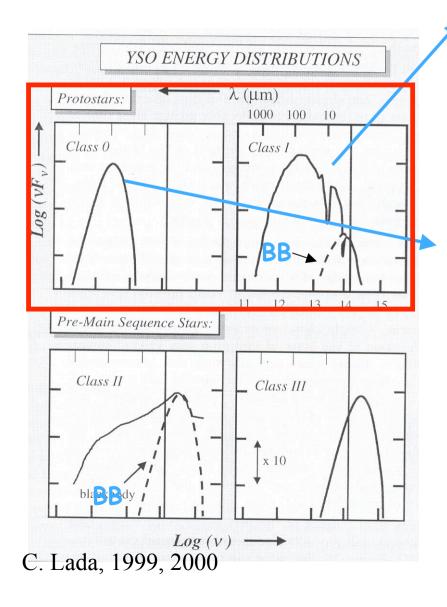
Normal star: evolutionary status determined by location HRD: L,  $T_{\rm eff}$ 

Embedded YSOs: associated with natal gas & dust Cannot be placed in HRD

Protostellar stage: circumstellar gas & dust:
absorbs and reprocesses radiation embedded object
Has extent >> stellar photosphere → dust has wide range of T
SED wider than single-T BB;
shape SED depends on nature & distribution of circumstellar material


More evolved object (pre-ms, ms): envelope, disk almost gone Shape of SED is f(evolutionary state)

Observationally: YSOs fall into 4 classes, based on shape of SED


#### Infrared/Submillimeter Young Stellar Object Classification

(Lada 1987 + André, Ward-Thompson, Barsony 1993)

#### $Stars < 8M_O$



## Embedded phase: protostars



#### Class I:

- -SED broader than single-TBB
- -At  $\lambda$ >2 $\mu$ m SED rises with  $\lambda$ :

#### huge IR-excess

- -Deeply embedded; detected in NIR (freq. assoc'd with RNe)
- -Often associated with outflows
- $-M_{circumst}(r<1000AU) << M_*$
- -Age ca.  $1-5 \times 10^5$  yrs

#### Class 0:

- -Much more extincted & embedded;
- -SED peak in submm; not detected at  $\lambda$ <20 $\mu$ m
- -SED similar to BB at T=20-30K
- -All have energetic, v. highly collimated outflows.
- $-M_{circumst}(r<1000AU) \approx M_*$
- -Constitute 10% of embedded sources
- -Age ca. 10<sup>4</sup> yrs

#### Protostellar nature embedded YSOs: evidence

Protostar: objects in process of accumulating into star-like configuration the bulk of the material they will contain as ms stars

1) SED can be modeled as embryonic stellar core + circumstellar disk + massive gas & dust envelope with density structure as predicted by theory for

ellar cloud cores. IRS5 L1551  $Log[\nu L_{\nu}(r_3)]$ Log[v]

fits: rotating-collapsing isothermal protostellar models Mass infall rate ~  $5 \times 10^{-6} M_{\odot}$  /yr

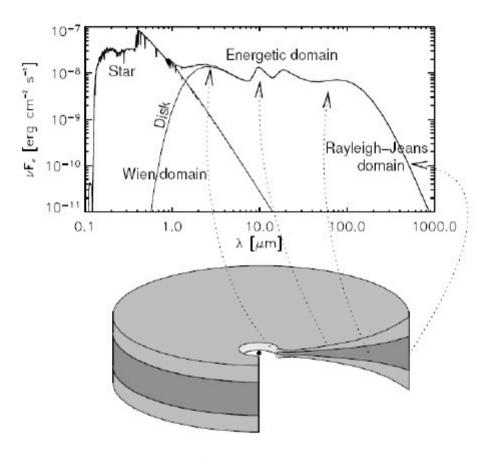
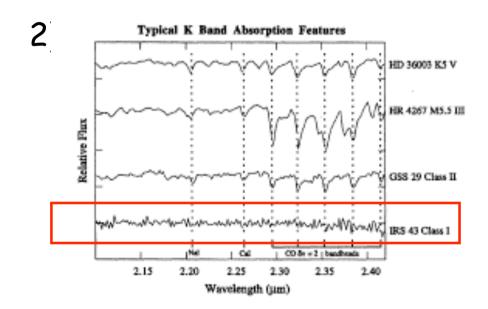




Figure 1.2: From Dullemond et al. (2006). Build-up of the SED of a flaring circumstellar disk and the origin of various components: the near infrared bump is supposed to originate in the puffed-up inner rim, the infrared dust features (as the silicate ones between 10μm and 20μm) from the warm surface layer, and the underlying continuum from the deeper and cooler disk regions. Typically the near and mid-infrared emission comes from small radii, while the far-infrared and the millimeter emission come from the outer disk regions.

#### Isella 2006: Dullemond et al. 2006

#### Protostellar nature embedded YSOs: evidence

1) SED can be modeled as embryonic stellar core + circumstellar disk + massive gas & dust envelope with density structure as predicted by theory for rotating, infalling protostellar cloud cores.



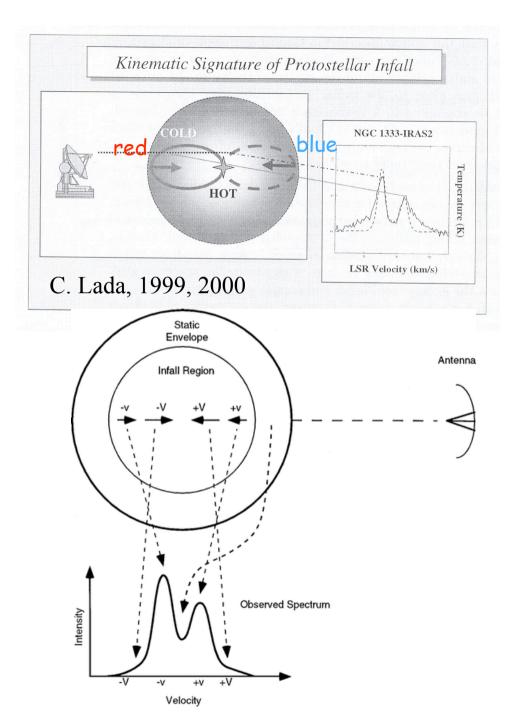
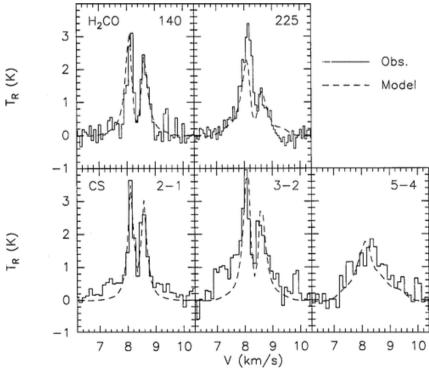

es hot dust at « 1AU ux to 'veil' absorption that.

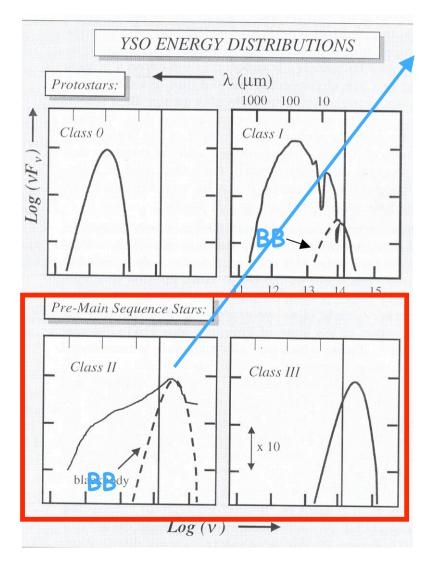
Fig. 1. K-band absorption features. The indicated Na I, Ca I, and CO features are commonly seen in the spectra of late-type stars such as the typical MK standards HD 36003 and HR 4267. Class II (and III) YSOs (such as GSS 29 shown) usually show similar features, but Class I YSOs (such as IRS 43 shown) usually do not show any early- or late-type features. The data shown are enlarged subregions of spectra presented in Appendix, but baseline continuum slopes have been removed.

Greene & Lada, AJ 1996

#### Protostellar nature embedded YSOs: evidence


- 1) SED can be modeled as embryonic stellar core + circumstellar disk + massive gas & dust envelope with density structure as predicted by theory for rotating, infalling protostellar cloud cores.
- 2) Featureless spectrum, requires hot dust at << 1AU to provide additional cont. flux to 'veil' absorption lines. Infall models acount for that.
- 3) Only viable source for outflow energy is gravity (from infall).
- 4) Direct kinematic evidence for infall motions found in Class 0 sources!




#### Protostellar infall

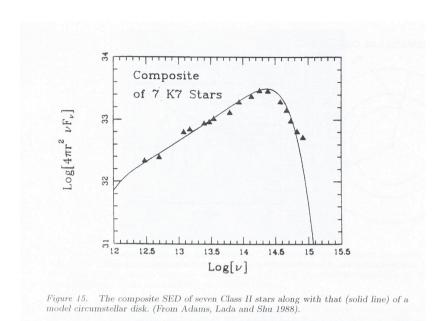
### Detecting infall from opt. thick line

B335; Zhou et al. 1993



#### Revealed phase: Pre-ms stars




#### Class II:

- -SED peaks in visible or NIR
- -SED broader than single-TBB
- -At  $\lambda$ >2 $\mu$ m SED falls with  $\lambda$  (power-law):

IR-excess, but smaller than Class I

- -Disk, but no massive envelope
- $-M_{disk} \approx 0.01-0.1 M_{\odot}$
- -Accretion rate  $\sim 10^{-8} \, M_{\odot}/\text{yr}$
- -in SFRs: 10x more than ClassI
- -in optical, ClassII are CTTS

SED can be fitted with model of disk with T-gradient, reprocessing and reradiating light from central star



#### ClassII model fit

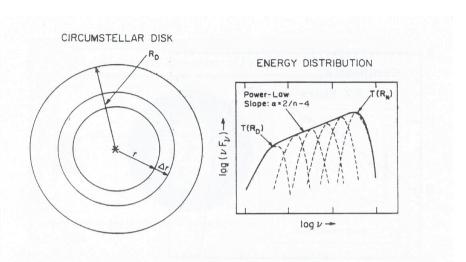
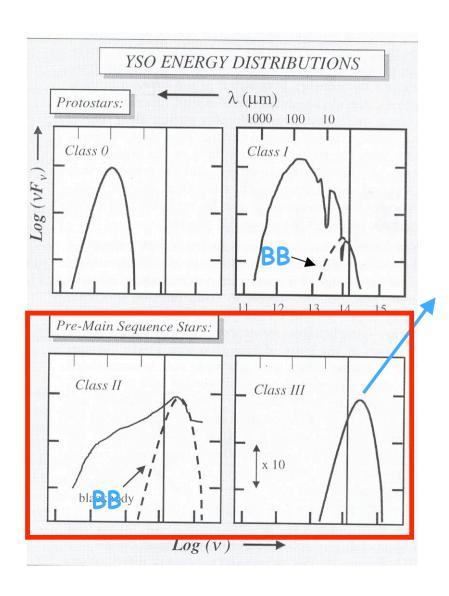




Figure 16. Schematic diagram of a spatially thin, optically thick disk and its emergent spectral energy distribution. The disk spectrum is composed of a superposition of blackbodies of varying temperature.

Disk: each annulus has area  $2\pi R\Delta R$  and radiates as BB with T(R) SED is superposition of series of BB-curves If T(R) ~ R^-n, then (Wien's law) max. emission at  $v\sim T(R)\sim R^{-n}$ . Luminosity each annulus:  $L_v dv = 2\pi R\Delta R\sigma T(R)^4 \sim R^{2-3n} dv \sim v^{3-2/n}$ .

For a SED,  $v L_v \sim v^{4-2/n}$ .

#### Revealed phase: Pre-ms stars



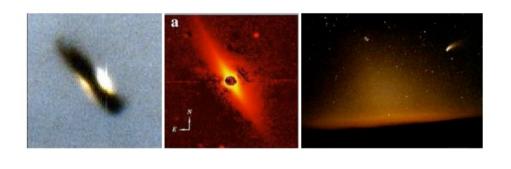
#### Class III:

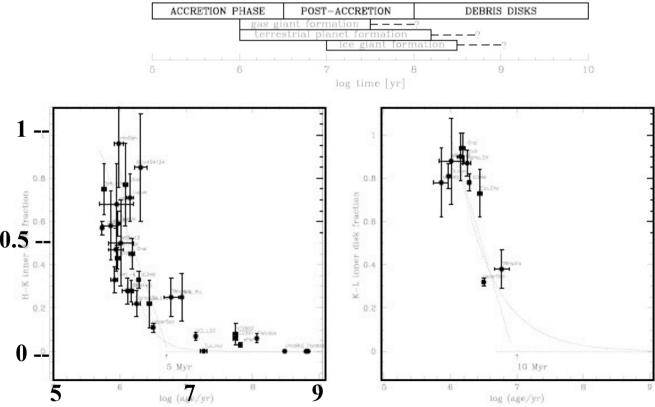
- -SED peak in visible/NIR
- -SED similar to single-T BB; interpreted as photospheres of young stars with extinction.
- -No significant amounts circumstellar gas, dust
- -ClassIII are WTTS
- -Age ca.  $10^6 10^7$  yrs

No IR excess, confused with fore- & background stars in SFRs. But are X-ray sources.

#### Evolutionary sequence low-mass YSOs

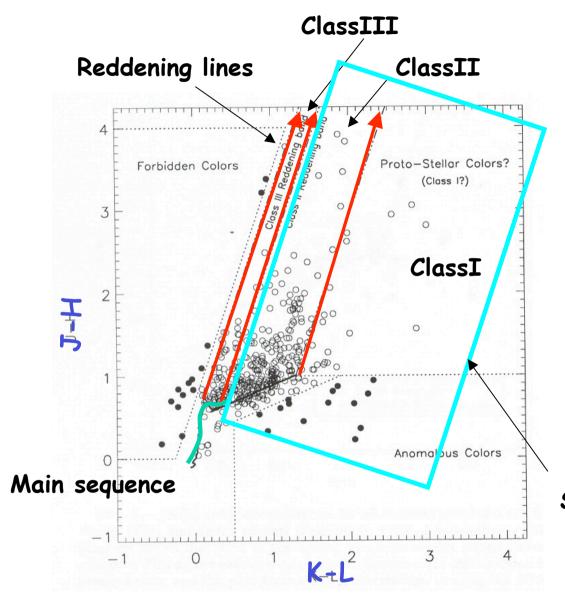
Evolution Class  $0 \Rightarrow I \Rightarrow II$ : requires removal circumstellar material in infalling envelope


Evolution Class II  $\Rightarrow$  III: Requires clearing of circumstellar disk


Total accretion: NO - because SFE is very low  $(M_* < M_{core})$ 

Therefore: very early on cloudy material physically removed Most likely by bipolar outflows, originating from stellar wind (virtually all Class O,I drive molecular outflows).

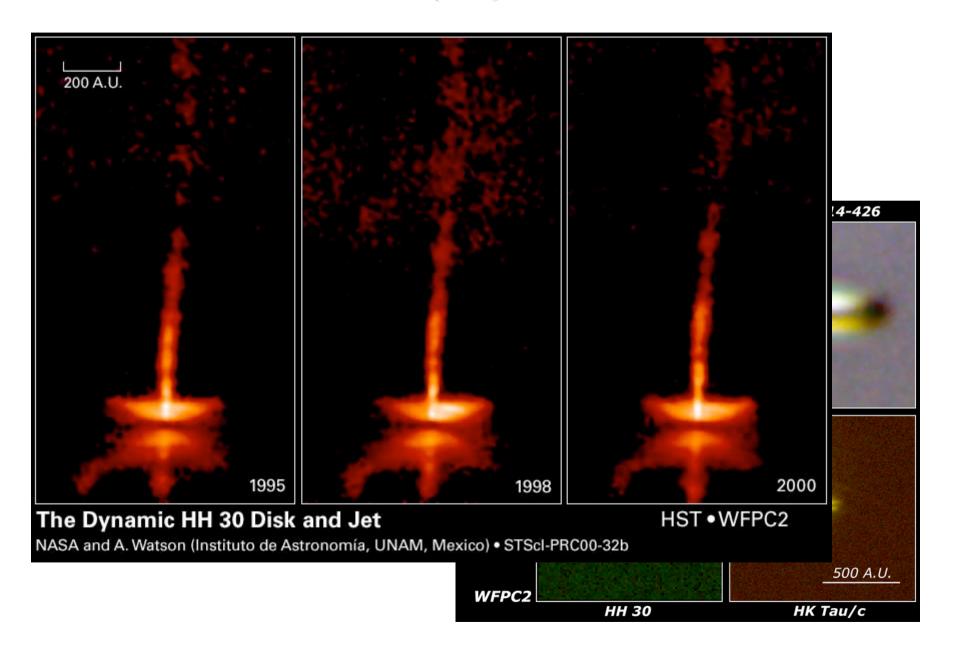
A protostar can only gain mass if it loses mass at same time


#### Disk lifetimes

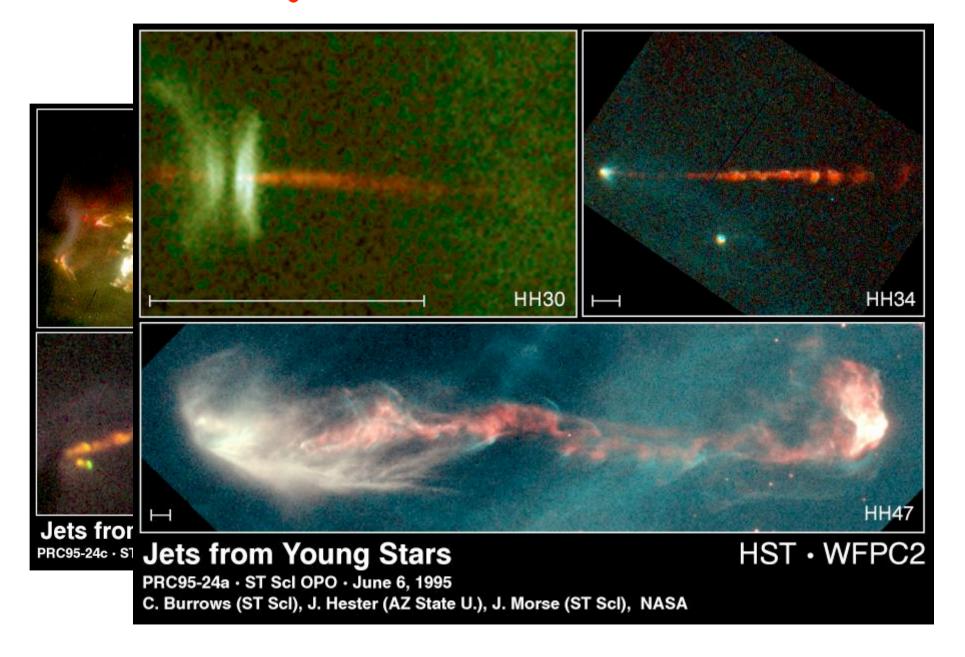


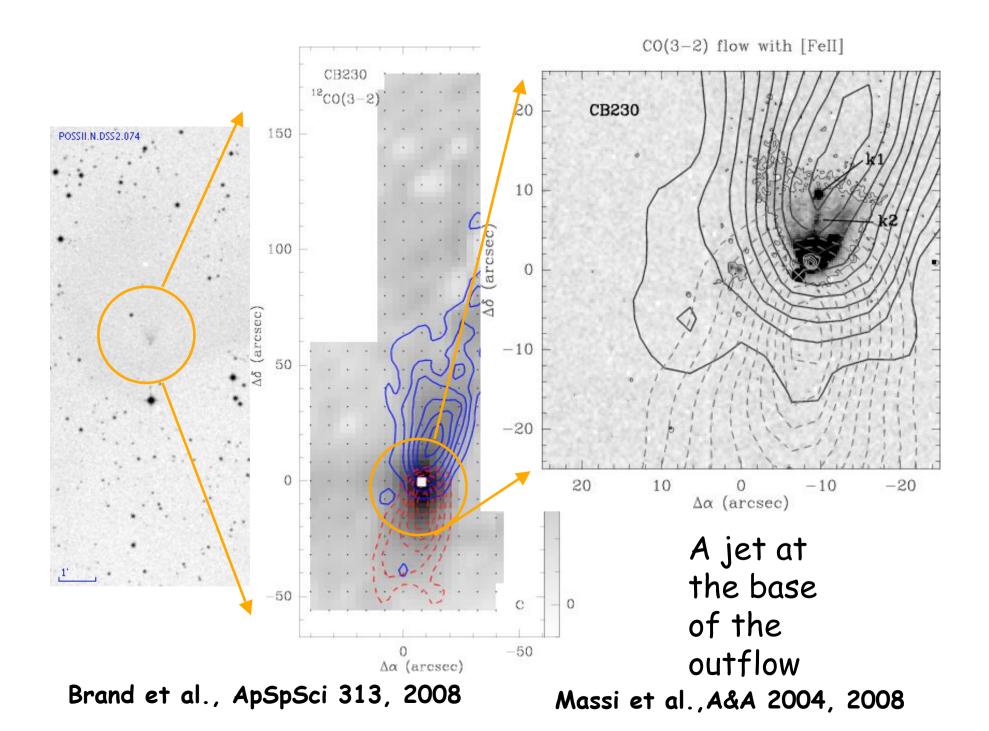


Disk fraction vs. log(cluster age) for ca. 3500 stars, 0.3-1  $M_{\odot}$ 


Hillenbrand 2006




# YSOs: IR colour-colour diagram


Stars with IR-excess

#### Disks... with HST (IR)



#### Disks and jets... with HST (IR)





## MASSIVE STAR FORMATION in the Galaxy

#### Literature:

Protostars & Planets I-V: conference proceedings. Reviews.

Tetons Conferences 1-4 (Astron. Soc. Pacific. Conf. Series)

(e.g. Tetons 4 (2001), Galactic Structure, Stars, and the Interstellar Medium)

Crete conf. (Kylafis, Lada, Eds.) "The physics of star form. and early stellar evolution"

http://www.cfa.harvard.edu/events/1999/crete/

Ferrière - 2001, Rev. Mod. Phys. 73, 1031 "The interstellar environment of our Galaxy"

Annual Reviews of Astronomy and Astrophysics. A search for 'molecular clouds' results in 376 reviews (!) covering all topics, and more, covered here. E.g.:

Evans - 1999, ARAA 37, 311 "Physical conditions in regions of star formation"

Bergin & Tafalla - 2007, ARAA 45, 339 "Cold dark clouds: the initial conditions for SF"

Lada & Lada - 2003, ARAA 51, 57 "Embedded clusters in molecular clouds"

Cox - 2005, ARAA 43, 337 "The three-phase interstellar medium revisited"

Kalberla & Kerp - 2009, ARAA 47, 37 "The HI distribution of the Milky Way"

Herbst & van Dishoeck - 2009, ARAA 47, 437 "Complex organic interstellar molecules"

Next lecture:
MASSIVE STAR FORMATION
Riccardo Cesaroni