Observability of High Density Tracing Molecular Lines in Lensed Galaxies with the Atacama Large Millimeter Array

Eleonora Bianchi INAF-IRA Università di Bologna

In collaboration with:

Loretta Gregorini Marcella Massardi Mattia Negrello (INAF OAPD) Andrea Lapi (SISSA) Italian node of the European ALMA Regional Centre

Molecular lines tracing high densities

HCN (Hydrogen cyanide)

CO

Starburst and AGN

DATA:

- Imanishi et al. 2010
- Imanishi et al. 2006
- Campione
- Carilli & Walter 2013

Significant HCO+/HCN variations in starbursts and AGN sources.

HNC indicator of AGN activity.

Lensing

Vieira et al. 2013

Flux-selection method efficient to select strongly lensed galaxies at high-z

SUBMM transparent lenses. Near-infrared (NIR) and ALMA submillimeter-wavelength images of SPT targets.

Sample selection

Publicly available Cycle 0 data:

P.I. M.Imanishi 2011.0.00020.S project

- BANDS 3, 6, 7, 9.
- ANTENNAs 16
- BASELINES: 18 400 m
- MAX RESOLUTION: 1.56" x (100/freq[GHz])
- SENSITIVITY: 0.14mJy @100 GHz in 1 hr

NGC 1614 z=0.016

IRAS 20551-4250 z=0.042

LINE	HCN/HCO+(J=4-3)	HNC (J=4-3)	HCN/HCO+(J=4-3)	HNC (J=4-3)
DATE (UT)	2011 Nov 15	2011 Nov 15	2012 June 1 2012 July 26	2012 June 2 2012 July 26
ANTENNAS	16	16	18 17	19 18
BANDPASS CALIBRATOR	3C454.3	3C454.3	3C454.3	3C454.3
FLUX CALIBRATOR	Callisto	Callisto	Neptune	Neptune
PHASE CALIBRATOR	J0423-013	J0423-013	J2056-472	J2056-472
ON-SOURCE TIME	26 min	25 min	26 min 28 min	25 min 25 min
CENTRAL FREQUENCY	348.922/350.920 GHz	356.920 GHz	347.680/353.589 GHz	347.680 GHz

CASA Calibration

NGC 1614

- Continuum
- HCO+ (38 slices)
- HNC (48 slices)

IRAS 20551-4250

- Continuum
- HCN (38 slices) HCN (25 slices)
 - HCO+(25 slices)
 - HNC (25 slices)

Extrapolation high-z

NGC 1614 z = 0.016

z = 2.5-3.0 Median redshift for the SMGs population

(Smail et al. 2000, 2002; Eales et al. 2000, Chapman et al. 2005; Hodge et al. 2013; Simpson et al. 2014)

Scale for new redshift:

• FLUX DENSITY by d_L

$$d_{L,old}^{2}/d_{L,new}^{2}$$

- ANGULAR SIZE by $d_{A,old} / d_{A,new}$
- FREQUENCY by $(1+z_{old})/(1+z_{new})$
- CHANNELWIDTH by $(1+z_{old}) / (1+z_{new})$
- TASK SIMOBSERVE

Lensing Simulation

Quantity	fiducial value
Halo mass	$M_H = 5 \times 10^{12} M_{\odot}$
Dark-to-light ratio	$M_H/M_* = 40.0$
Ellipticity	q = 0.7
Lens redhift	$z_{l} = 0.7$

•	NGC	1614	@ z=2.5
---	-----	------	---------

- NGC 1614 @ z=3.0
- IRAS 20551-4250 @ z=2.5
- IRAS 20551-4250 @ z=3.0

EXTRACTION

Lensing model based on Lapi et al. 2012

Galaxy-scale gravitational strong lensing events.

LENS = isolated early-type elliptical galaxy associated to a DM halo

Lensing configurations

Configuration	dx	dy
1	0.00	0.00
2	0.25	0.00
3	0.08	0.08
4	0.30	0.30
5	0.12	0.00
6	0.30	0.00
7	0.04	0.04
8	0.19	0.19

NGC 1614 @ z=2.5 Continuum 8 conf HCN, HCO+, HNC 4 conf

NGC 1614 @ z=3.0 Continuum, HCN, HCO+, HNC 2 conf

IRAS 20551-4250 @ z=2.5 Continuum, HCN, HCO+, HNC 4 conf

1.0 **IRAS 20551-4250 @ z=3.0** Continuum, HCN, HCO+, HNC 2 conf

(Jy/beam) 5×10⁻⁴ 1.5×10⁻³ 2.5×10⁻³

NGC 1614 z=2.5 Continu

12000 Right Ascensio

1.5×10⁻³ 2.5×10⁻³ 3.5×10⁻

33^m59⁸

1) µ~21

12000 Right Ascensio

5) µ~25

-8°34'4

2000

-8°34'46

CASA Simulations

SIMOBSERVE

ALMA Full Array configuration 14 (intermediate resolution 0.5" @ 100 GHz) Integration time 10 min Thermal noise

• CLEAN 0.08" pixel⁻¹

(Jy/beam) 10⁻³ 2×10⁻³ 3×10⁻³ 4×10⁻³ 5×10⁻³

μ~23

NGC 1614 z=2.5 Continuum

NGC 1614 z=2.5 Continuum

- * S peak: peak flux
- \diamond **S** int: integrated flux
- \triangle **S_bright**: integrated flux of the brightest component
 - S_faint: integrated flux of the faintest component
 - 5 σ @ 2 min

Simulation Results NGC 1614 z = 2.5

Simulation Results NGC 1614 z = 2.5

IRAS 20551-4250

IRAS 20551-4250

Observing strategies

- Herschel surveys $\approx 1000 \text{ deg}^2$ H-ATLAS $\approx 550 \text{ deg}^2$
- 260 selected sources in 21 hr
- 70 sources in half of H-ATLAS in 6 hr

Determination of redshift with HCN (4-3) and HCO+(4-3) and HNC (4-3) for the most magnified ones.

μ range	Number density $[deg^{-2}]$	
$\mu < 5$	0.08	
$\mu < 10$	0.18	
$\mu < 30$	0.29	
$\mu < 50$	0.32	
$\mu < 100$	0.33	

Follow-up spectral line observations

Sources with 10 < µ < 30 87 in the full *Herschel* survey area 24 in half of the H-ATLAS area

3 hr observations of HCN and HCO+

4.30 hr addictional HNC observations

Work in progress

NGC 1068 z = 0.004

- Prototypical nearby D ~ 14 Mpc Seyfert 2 galaxy
- Composite starburst/AGN galaxy
- Well studied
- Model of buried AGN (observation r ~ 2 kpc)

S. García-Burillo et al. 2014

Future Perspectives

- Upgrade models
- ALMA Cycle 3
 Proposal
- ALMA imaging of galaxies central regions and analysis on the visibility plane

Lapi et al. 2014

Summary

• SET OF PROCEDURES:

From real images of local galaxies to simulated high-z lensed objects.

OBSERVABILITY

HCN, HCO+, HNC in lensed galaxies with ALMA.

OBSERVING STRATEGIES

Follow-up spectral line observations of lensed sources selected by *Herschel* surveys.

