A search for a line polarization calibration catalogue for ALMA

Felipe Alves

German ALMA Regional Center Argelander-Institut für Astronomie Bonn - Germany

Argelander-Institut für Astronomie

Team

- Wouter Vlemmings (Nordic node)
- Liz Humphreys (EU node)
- Sofia Ramstedt (Uppsala University)
- Ramprasad Rao (SMA/ASIAA)
- Andrés Pérez-Sánchez (AlfA)

ALMA Polarization System

• So far...

- Linear polarization feeds (X and Y)
- Dual or single polarization modes available: XX YY
- Max 2 GHz / polarization
- Better sensitivity (dual) or better resolution (single)

• Full capabilities:

- Parallel- and cross-handed visibilities: XX YY XY YX
- Cycle 2: continuum (TDM) observations (~ 31.25 MHz wide channels)

ALMA Polarization System

Approximation for weakly polarized sources

$$XX = g_{nX}g_{mX}^{*}[I + Q\cos 2\chi + U\sin 2\chi]$$

$$XY = g_{nX}g_{mY}^{*}[(d_{nX} - d_{mY}^{*})I - Q\cos 2\chi + U\sin 2\chi + iV]$$

$$YX = g_{nY}g_{mX}^{*}[(d_{nY} - d_{mX}^{*})I - Q\cos 2\chi + U\sin 2\chi - iV]$$

$$YY = g_{nY}g_{mY}^{*}[I - Q\cos 2\chi - U\sin 2\chi].$$

X – Y phase difference (Φ_{XY}) known better than 1 degree => 0.1 % polarization accuracy

Calibration:

- Unpolarized sources: solve for d-terms (leakage) but Φ_{XY} unknown;
- *Polarized* sources with **known** polarization: solve for both *d*-terms and Φ_{XY} .

• *Polarized* sources with **unknown** polarization: observations over a large range of parallactic angle coverage are necessary ($\geq 90^{\circ}$), solve for *d*-terms and Φ_{XY} .

Calibration

- Challenge: find suitable calibrators
 - Strong enough
 - Stable properties
 - Good parallactic angle coverage
- Solution: sources with known polarization properties

Goal: to obtain a sufficiently large set of polarization calibrators

Using molecular lines for polarization calibration

It is important to measure how the polarization varies with time and frequency

 $P(\omega,t), \chi(\omega,t)$

- Leakage (*D*-terms) dependence with frequency
- Linear polarization model from a rescaled Stokes I spectrum (Kemball et al. 1995) => $D(\omega,t)$ $Q(\omega_i) + jU(\omega_i) = \beta_i I(\omega_i)$
- Task previously done with SPCAL (at AIPS) and already built in the POLCAL task of CASA.

 Many studies have used polarized lines as a replacement for a continuum polarization calibrator to do leakage calibration (Kemball et al. 1995; Kemball & Diamond 1997; Vlemmings et al. 2002, 2005)

SiO masers

- Just a few strongly polarized continuum sources at high frequencies
- SiO masers:
 - Bright emission
 - Strongly polarized
- Science:
 - masers excited in regions very close to the stellar surface (a few AU),
 - dynamical influence of the magnetic field in the formation of CSE,

SiO masers

W Hya: ²⁹SiO peak emission ~ 15 Jy

VX Sgr: mean polarization fraction between 13 % and 56 %

Polarimetry with ALMA - Bologna

							1.00					
		²⁸ Si				²⁹ SiO			0		For typic	al Retron
v	$J_u - J_d$	Freq	А	ALMA	v	$J_u - J_d$]	Freq	А	ALMA		
		(GHz)	(s ⁻¹)	band			(GHz)	(s^{-1})	band	SFR and	CSE of
0	1 - 0	43.42386	3.036×10^{-6}	1		1 - 0	42	.87992	2.114×10^{-8}	1	turne atom	
	2 - 1	86.84699	2.915×10^{-5}	2		2 - 1	85	.75906	2.460×10^{-7}	2	type stars	5.
	1 - 0	43.12208	3.011×10 ⁻⁶	1	0	3 - 2	128	3.63685	9.696×10 ⁻⁷	4		
	2 - 1	86.24344	2.891×10 ⁻	2		4 - 3	171	.51255	2.532×10^{-6}	5		
	3 - 2	129.36326	1.045×10^{-4}	4		5 - 4	214	1.38548	5.334×10 ⁻	6	SIO, H_2O	and HC
1	4 - 3	172.48102	2.569×10^{-4}	5		6 - 5	257	7.25493	9.869×10 ⁻	6	vory high	nolarizo
	5 - 4	215.59592	5.131×10 ⁻⁴	6		3 - 2	127	7.74849	3.350×10 ⁻⁴	4	very myn	polarize
	6 - 5	258.70725	9.003×10^{-4}	6	1	4 - 3	170	0.32807	8.745×10 ⁻⁴	5	maser en	nission
	7 - 6	301.81430	1.445×10 ⁻³	7		6 - 5	255	5.47849	3.407×10-3	6		
	1 - 0	42.82059	2.986×10 ⁻⁶	1	2	6 - 5	253	8.70317	1.11139	6		
	2 - 1	85.64046	2.866×10^{-3}	3				30 0 1			Pol level	s un to 1
~	3 - 2	128.45881	1.036×10^{-4}	4		1 0	10	³⁰ S1(0			S up to i
2	4 - 3	1/1.2/50/	2.54/×10 ⁴	5		1-0	42.	3/3426	2.016×10 ⁻		14% and	19% (wi
	5 - 4	214.08848	5.088×10^{-1}	6	l 🎙	2 - 1	84.	/461/0	2.346×10	2	aanaidari	
	6-5	256.89831	8.92/×10 ⁻⁺	6		5 - 4	211	.853473	5.081×10 ⁻¹	6	consideri	ng aniso
	/ - 6	299.70386	1.433×10 ⁻¹	/	1	4 - 3	168	.323352	8.054×10 ⁻¹	5	numping	and any
2	1-0	42.51938	2.951×10^{-6}	l	2	4 - 3	167	.160563	2.542×10^{-1}	5	pumping	and any
3	3 - 2	127.55521	$1.02/\times10^{-4}$	4							non-Zeer	nan effe
	4 - 3	1/0.0/05/	2.525×10 ⁻⁴	2								
- 4	5 - 4	212.58248	5.044×10 ⁻⁴	6								
4	5 - 4	211.07784	4.986×10 ⁻⁴	6								
			11.0					Star Star			Henry	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
			H ₂ O				$\mathbf{\Sigma}$			(HCN	
		Transition	Freq	А		ALN	ИА			Transition	Freq	А
			(GHz)	(s ⁻¹	¹)	baı	ıd				(GHz)	(s^{-1})
		313 - 220	183.31012	3.629×	<10-6	5				1 - 0	88.631602	1.771×10
		10 ₂₉ - 9 ₃₆	321.22564	6.348×	<10 ⁻⁶	7		1	$v_2 = 2^0$	1 - 0	89.0877	1.483×10-
		515 - 422	325.15292	1.166×	<10 ⁻⁵	7			_	2 - 1	177.2387	4.578×10-
]	$17_{413} - 16_{710}$	354.8089	1.096×	<10 ⁻⁵	7		ν	$v_2 = 1^{1_c}$	3 - 2	267.1993	2.262×10 ⁻
	-	752 - 660	437 34667	2.212×	(10-5	8			2 -	4 - 3	354 4605	6 122×10 ⁻
		642 - 550	439 15081	2.857×	(10-5	8			$v_{2} = 4$	9 - 8	804 7509	a
		6 ₄₃ 5 ₅₀	470 88895	3 534	10-5	8		$v_{1} = 1$	$v_2 = 4$	10 - 9	890 761	_a
		4.2 551	96 26116	4 719	$\frac{10}{10^{-7}}$	3		v1 – 1	<i>v</i> ₂ = 4	10 - 7	070.701	_
	- 1		232 68670	4 770v	/10-6	6						
v_2	- 1	$5_{50} - 0_{43}$	202 6645	4.//UX	10 0							
		$0_{61} - 1_{52}$	293.0043	-" E E C O:	10-3	0				Perez-Sá	inchez & V	lemming
		1 ₁₀ - 1 ₀₁	658.00655	5.568×	(10)							

3 strengths in SE of late-

nd HCN: larized sion

ip to 13%, % (without anisotropic d any other n effect).

ALMA

band 2/3

2/3

5

6

7

10

10

	Pérez-Sánchez &	Vlemmings,	2013
--	-----------------	------------	------

SiO masers

APEX observations

- Multi-epoch observations
 - Mar, Jun, Oct, Dec 2008
 - Apr, Jun 2010
 - Sep 2011

²⁸ SiO 5-4 v=1	215.5959 GHz
²⁸ SiO 5-4 v=2	214.0885 GHz
²⁹ SiO 5-4 v=0	214.3858 GHz

- 36 sources: evolved stars (AGB stars and supergiants)
- 32 detections at least of one transition
- 20% of sources => v=2 stronger than v=1
- Peak fluxes as high as 160 Jy (W Hya)
- Narrow linewidths (< 5 km/s)
- Wide velocity range

Ramstedt et al. 2012

SMA observations

- 14 evolved stars (AGB and supergiants)
- Extended configuration polarization observations
- 2 full tracks, spectral resolution ~ 0.56 km/s
- Spatial resolution ~ 1.2 arcseconds, possibly superresolving the strongest cases
- 2 sidebands with a 4 GHz bandwidth each
- All SiO maser lines +
 SO and SiO thermal
- Continuum

Source	RA	Dec	FAPEX	Polarized	rms (5σ	on-source time	
			(Jy)	Flux ³	detection)		
			(SiO 5-4,	(Jy)	(Jy/beam)		
			v=1)				
O Ceti ¹	02:19:20.79	-02:58:39.5	127	13	2.5	> 0.5 hours	
S Ori ¹	05:29:00.89	-04:41:32.8	50	5	1.0	> 0.5 hours	
WX Psc ¹	01:06:25.98	+12:35:53.0	8.7	0.87	0.17	0.7 hours	
GX Mon ¹	06:52:47.02	+08:25:19.20	12.4 ⁵	1.2	0.25	> 0.5 hours	
VY Cma ¹	07:22:58.30	-25:46:03.20	31.2	3.1	0.62	> 0.5 hours	
R Leo ^{1,4}	09:47:33.49	+11:25:43.67	190	19	3.8	> 0.5 hours	
S Per ^{1,4}	02:22:51.71	+58:35:11.45	8	0.8	0.16	1.5 hours	
W Hya ²	13:49:02.00	-28:22:03.49	159	16	3.2	> 0.5 hours	
R Aql ²	19:06:22.25	+08:13:48.0	21.7	2.2	0.43	> 0.5 hours	
X Oph ²	18:38:21.12	+08:50:02.7	21.1	2.1	0.42	> 0.5 hours	
OH 2.6-0.4 ²	17:53:18.60	-26:56:36.0	7.4	0.74	0.15	1.3 hours	
R Hya ²	13:29:42.78	-23:16:52.78	10.4	1.0	0.21	0.6 hours	
VX Sgr ²	18:08:04.05	-22:13:26.63	6	0.6	0.12	1.9 hours	
RR Aql ^{2,4}	19:57:36.06	-01:53:11.34	18	1.8	0.36	> 0.5 hours	

SMA observations

Check for polarization stability

VX Sgr (2008 ext.: Vlemmings et al. 2011)
W Hya (2008 ext.: Vlemmings et al. 2011)
VY CMa (2002 comp: Shinnaga et al. 2004)

SMA observations

VX Sgr²⁹SiO v=0 J=5-4

Good candidates: . Polarization fraction and EVPA very stable across the emission

. Not much variability

VX Sgr SiO v=1 J=5-

20

-20

-40

20 0 Right Ascension

27/06/13

(km s ⁻¹)	(mas)	(mas)												Degree of Linear
$v = 1,^{28}$ SiO masers								Velocity ^a	Range	Peak Intensity	$X \text{ Offset}^{c}$	$Y \text{ Offset}^{\circ}$	P.A.	Polarization
-8.0	-44.7 ± 13.6	-26.1 ± 17.5	$0.50^{+0.06}_{-0.13}$	$0.28^{+0.20}_{-0.08}$	18^{+27}_{-9}	56	Number	$({\rm km \ s^{-1}})$	$({\rm km \ s^{-1}})$	(Jy)	(arcsec)	(arcsec)	(deg)	(%)
-5.2	-22.2 ± 9.3	10.7 ± 12.1	$0.94^{+0.09}_{-0.18}$	$0.54^{+0.29}_{-0.11}$	25^{+9}_{-8}	57		10.1	11 6 10 7		0.00 . 0.00	1.00 . 0.50	00 . 00	(2) 21
-2.3	-24.3 ± 5.5	6.5 ± 7.3	$2.14^{+0.03}_{-0.12}$	$0.71^{+0.21}_{-0.12}$	21^{+7}_{-3}	33	1	42.1	41.6-42.7	7.4	-0.23 ± 0.30	-1.28 ± 0.50	92 ± 30	63 ± 31
-1.8	-14.4 ± 4.5	7.1 ± 5.8	$3.20^{+0.14}_{-0.14}$	$0.80^{+0.10}_{-0.16}$	31^{+9}_{-4}	25	2	35.9	33.1-37.6	63.9	0.00	0.00	71 ± 5	56 ± 4
-1.2	-18.3 ± 3.8	8 ± 4.8	$4.11^{+0.07}_{-0.07}$	$1.06^{+0.10}_{-0.10}$	33 ⁺⁴ ₋₃	26	3	26.9	25.2 - 30.3	33.6	-0.01 ± 0.06	-0.14 ± 0.09	31 ± 24	23 ± 6
-0.6	-31.2 ± 3.6	10.7 ± 4.7	$4.29^{+0.05}_{-0.11}$	$1.23^{+0.18}_{-0.14}$	34+5	29	4	24.1	22.4-24.1	23.7	-0.02 ± 0.09	-0.08 ± 0.13	62 ± 21	16 ± 4
-0.1	-20.1 ± 3.9	0.3 ± 5.2	$3.76^{+0.13}_{-0.06}$	$1.16^{+0.18}_{-0.13}$	33+5	31	5	16.1	13.9-17.3	23.0	0.01 ± 0.10	0.05 ± 0.15		<10
0.5	-13.5 ± 4.5	7.4 ± 6.0	$3.17^{+0.08}_{-0.08}$	$0.86^{+0.10}_{-0.10}$	35^{+7}_{-6}	27	6	12.2	11 1-13 3	20.2	0.14 ± 0.07	0.46 ± 0.10	89 + 12	32 + 6
1.1	-16.2 ± 5.1	20.3 ± 6.5	$2.85^{+0.08}_{-0.08}$	$0.62^{+0.15}_{-0.10}$	40^{+13}_{-6}	22		12.2	11.1-15.5	15.0	0.14 ± 0.07	0.40 ± 0.10	$0 \rightarrow 12$	52 ± 0
1.6	-18.3 ± 5.5	22.4 ± 7.0	$2.73_{-0.08}^{+0.04}$	$0.34^{+0.12}_{-0.07}$	37^{+20}_{-10}	13	/	0.9	-0.3-2.0	15.9	-0.01 ± 0.15	0.13 ± 0.21	78 ± 60	29 ± 25
			1 Part	1. 22		X	1.14		12	1.00				
100			1	- AT		X	17					E VIN		
ALC: NO			191		101 - 10	2		10.0	17			TP		

Future work

- Observe SiO masers in other bands (86 GHz)
- ALMA Polarization CSV and calibrators catalogue
- Implementing realistic source structure models in the available simulators
- Polarization analysis tools: angle dispersion, dynamic parameters such as B-field energies and mass-to-flux ratio (to the suite of ALMA data analysis tools)
- Advanced polarization observation interpretation

16

Science

 Dust continuum polarization (Cycle 2) + Zeeman + Goldreich-Kylafis effect (future) toward

– Protostellar cores with hourglass *B*-field morphology

- Compare with SMA polarization maps (commissioning)
- Resolve *B*-fields at circumstellar disk
- Compare core B-field with filaments

- Pipe nebula: B59, Core 109

27/06/13

 NGC 2024 FIR 5 (compare dust polarized emission with SMA data and resolve outflow powering sources)

NGC 2024 FIR 5

NGC 2024 FIR 5

-Depolarization

-Field morphology at disk scales

-Evolutionary stage of each component

-Complex outflow emission traced by CO

