
ALMA capabilities

Elisabetta Liuzzo

INAF- Istituto di Radioastronomia Italian node of European ALMA Regional Centre

EUROPEAN ARC ALMA Regional Centre || Italian

ALMA rationale

The design of ALMA is driven by three key science goals:

- The ability to detect spectral line emission from CO or [CII] in a normal galaxy like the Milky Way at a redshift of z=3, in less than 24 hours

-> frequency bands, high sensitivity

-> study of star formation in galaxies up to high redshift, galaxy formation, ...

- The ability to image the gas kinematics in protostars and in protoplanetary disks around young Sun-like stars in the nearest molecular clouds (150 pc)

-> high and low angular resolution, high spectral resolution

-> study of processes of star and planet formation, stellar evolution and structure, astrochemistry, ...

- The ability to provide precise high dynamic range (=|image max/image min|) images at an angular resolution of 0.1 arcsec

-> high angular resolution and sensitivity

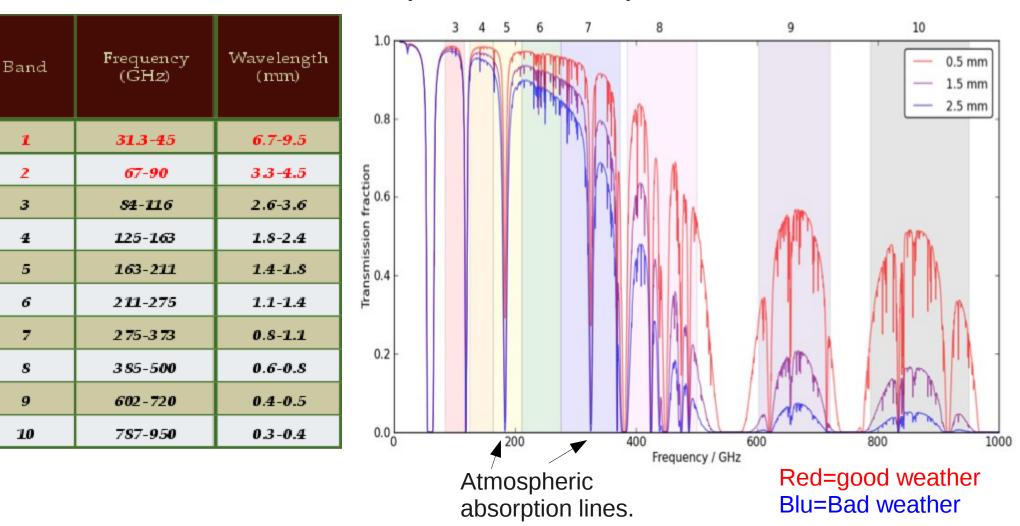
-> galaxy dynamics, AGN core mechanisms, imaging of exoplanets, comets, asteroids, ...

ALMA full array

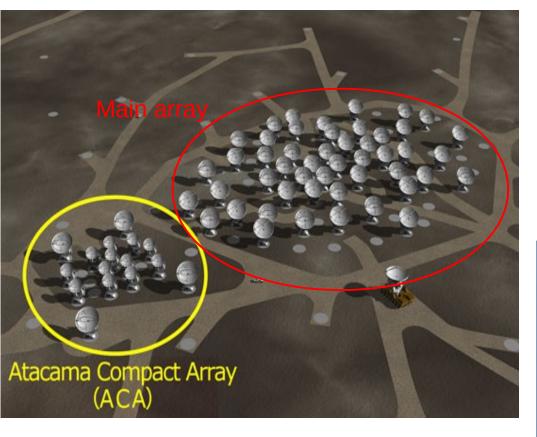
The Atacama Large Millimeter Array is a **mm-submm reconfigurable interferometer**

Inaugurated in March 2013 on the Chajinantor plain (altitude=5000m, Chile)

Antennas: **50x12m** main array + 12x7m ACA + 4x12m Total Power • Baselines length: 15m ->150m-16km 9m->50m + ٠ Frequency range: **10 bands between 30-900 GHz** (0.3-10 mm) ٠ Bandwidth: 2 GHz x 4 basebands ٠ Polarimetry: Full Stokes capability • Velocity resolution: As narrow as 0.008 × (Freq/300GHz) km/s ٠ ~0.003 km/s @ 100 GHz, ~0.03 km/s @ 950 GHz

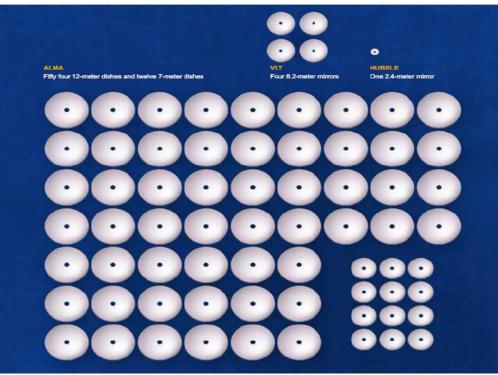

ALMA sites

- > AOS: ALMA Operations Site (5000m): Antennas, Correlator
- OSF: Operations Support Facility (3000m): Labs, Antenna Assembly & Maintenance Operators, Astronomers
- SCO: Santiago Central Office:
 - Call for Proposals
 - Running ALMA
 - Data Reduction Pipeline
 - Initial Quality Assessment

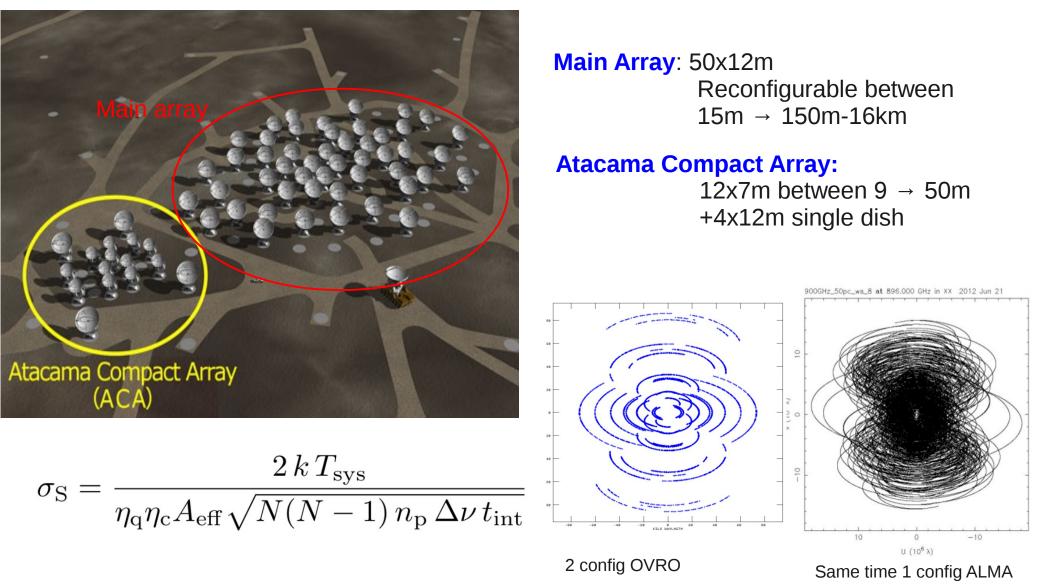

ALMA observing site & bands

Chajinantor transmissivity chart at various PWV conditions

Dry site → lower Tsys and higher frequencies observable


ALMA array(s)

$$\sigma_{\rm S} = \frac{2 \, k \, T_{\rm sys}}{\eta_{\rm q} \eta_{\rm c} A_{\rm eff} \sqrt{N(N-1) \, n_{\rm p} \, \Delta \nu \, t_{\rm int}}}$$

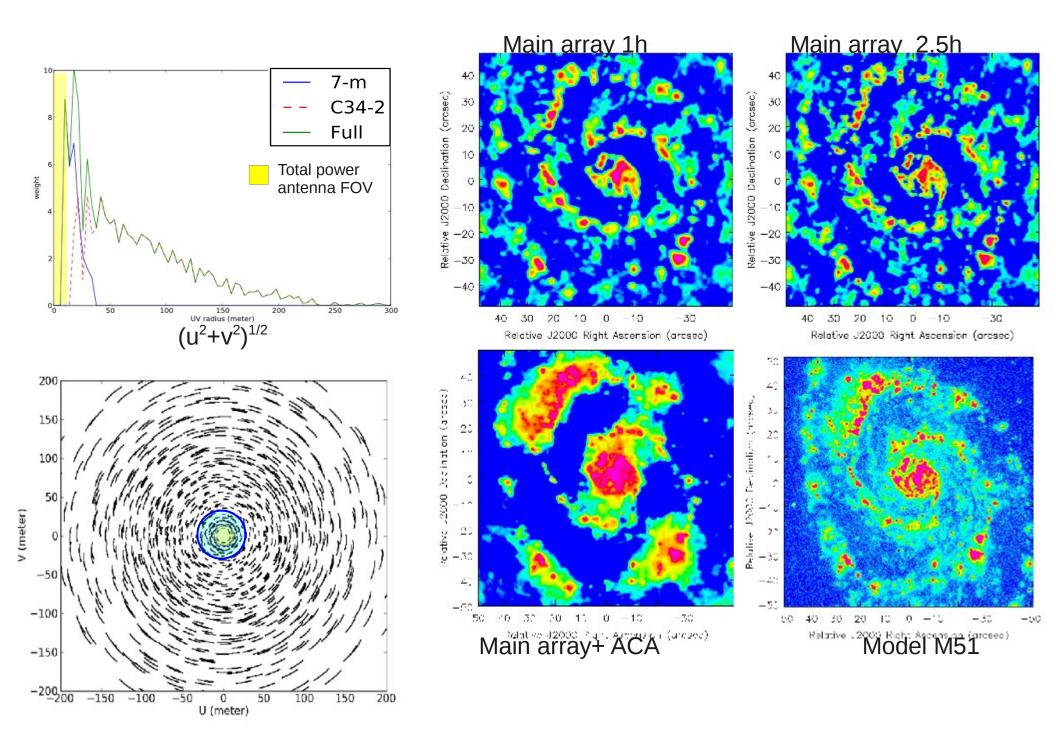

Atacama Compact Array:

12x7m between 9 → 50m +4x12m single dish

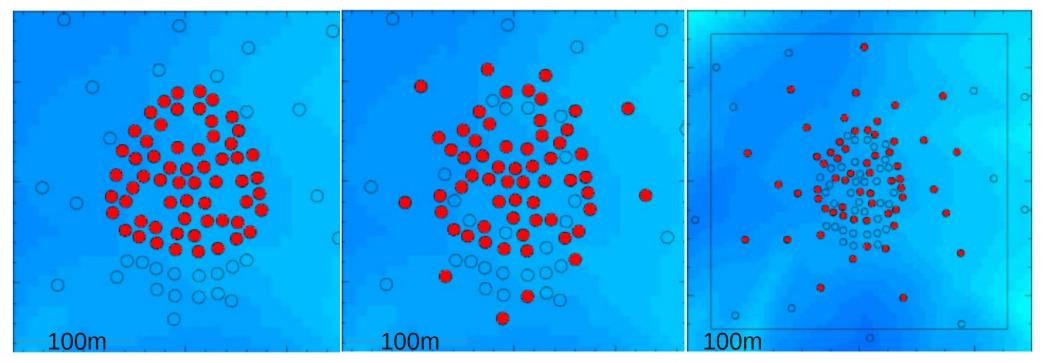
Large number of antennas \rightarrow large collecting area \rightarrow high sensitivity

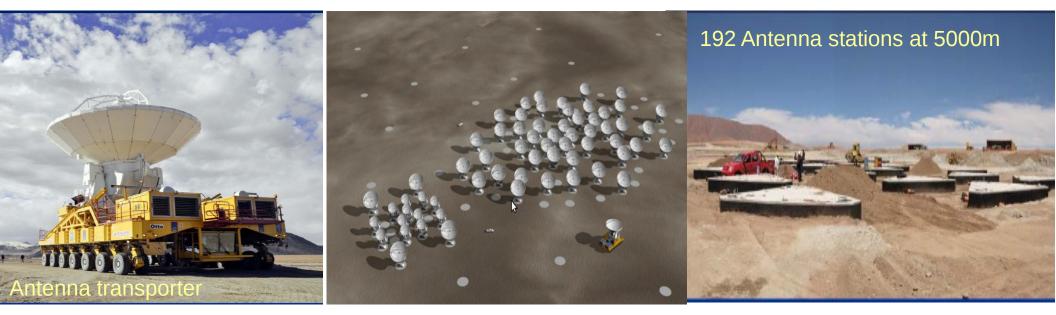
ALMA array(s)

Large number of antennas

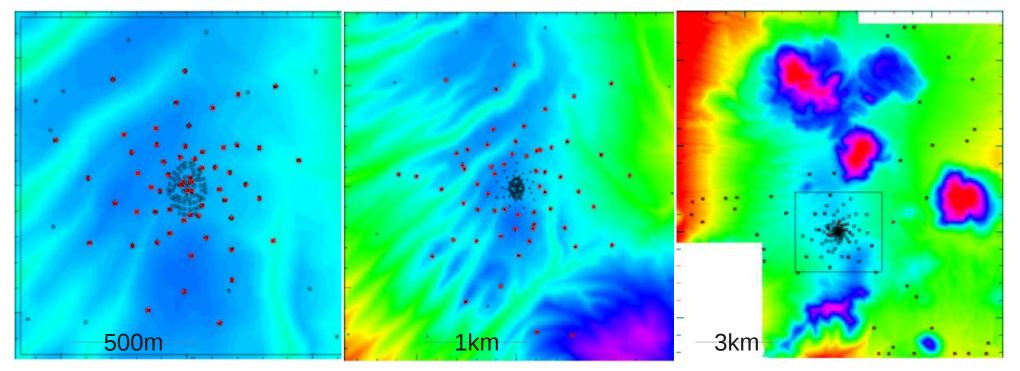

- \rightarrow large number of baselines
- → good istantaneous uv-plane coverage
- → good imaging in short time

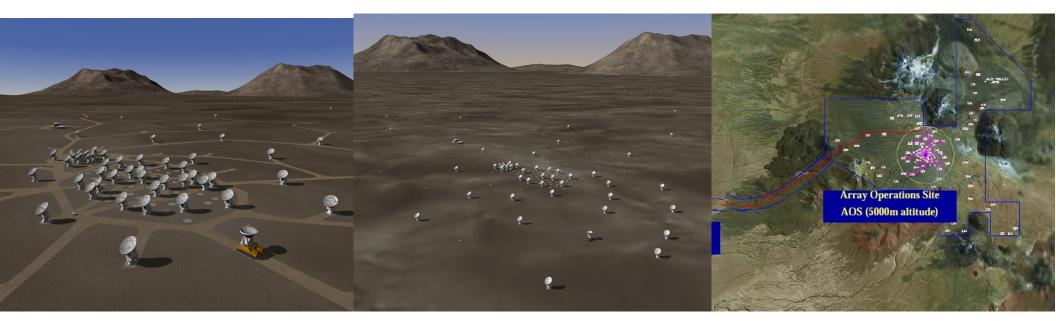
(See tutorial on UV plane)

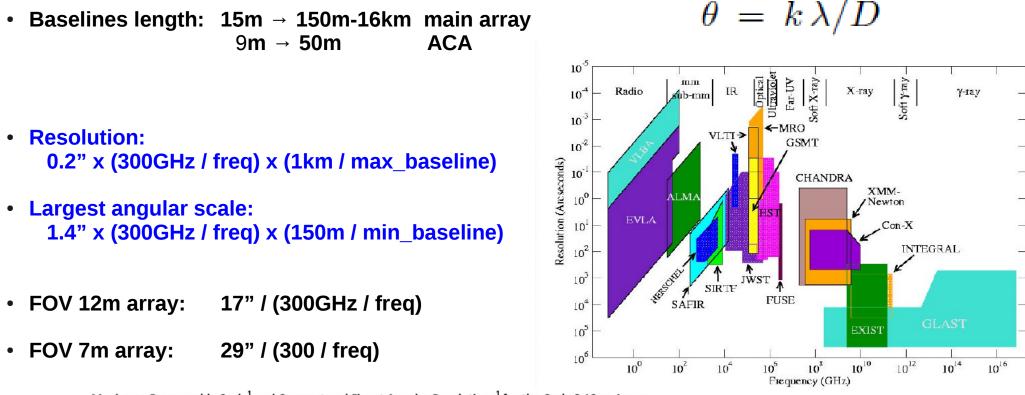

ALMA arrays



ALMA array(s)




ALMA main array reconfiguration

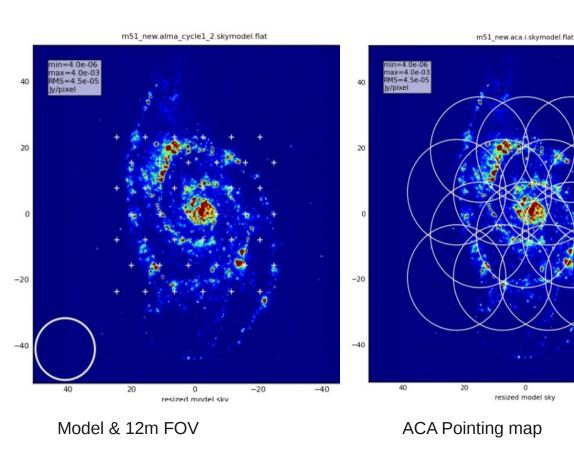


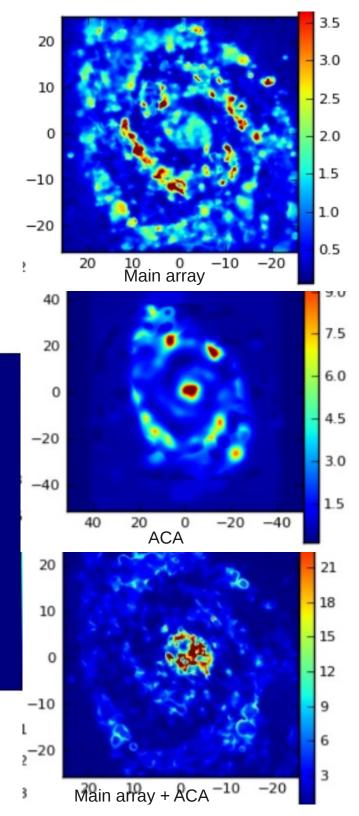
ALMA main array reconfiguration

ALMA resolution & LAS

Maximum Recoverable Scale¹ and Coarsest and Finest Angular Resolutions¹ for the Cycle 3 12-m Array configurations

Frequency	Maximum Recoverable Scale without ACA ^{2,3}	Coarsest allowed angular resolution ^{2,3,4}	Finest achievable angular resolution ^{2,3,5}
(GHz)	(arcsec)	(arcsec)	(arcsec)
100	25.3	6.8	0.075
150	16.9	4.6	0.050
230	11.0	3.0	0.030
345	7.3	2.0	0.034
460	5.5	1.4	0.060
650	3.9	1.0	0.040
870	2.9	0.8	0.030

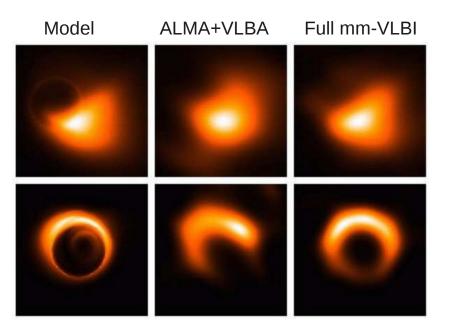

Maximum Recoverable Scales for ACA 7-m

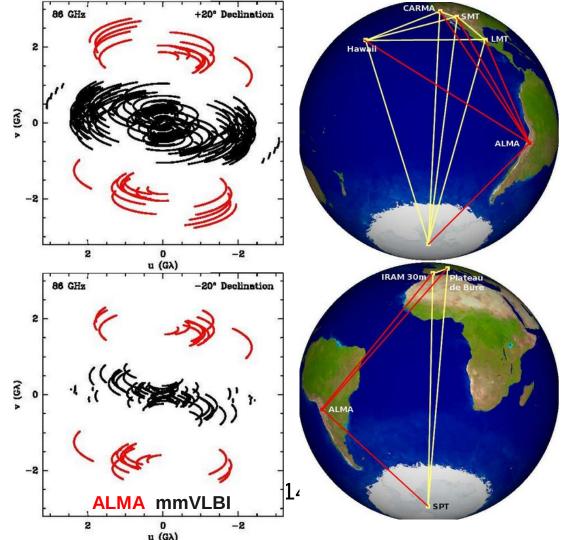

Frequency (GHz)	Maximum Recoverable Scale ^{1,2} (arcsec)
100	42.8
150	28.5
230	18.6
345	12.4
460	9.3
650	6.6
870	4.9

Mosaicking

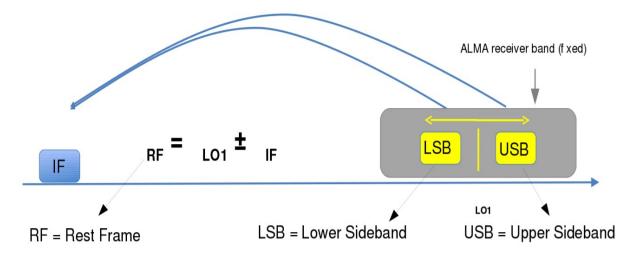
Largest angular scales than that available to the shortest baseline cannot be observed.

Details in the ranges available to the given baselines can be observed on larger region of the sky by mosaicking the region.




mm-VLBI with ALMA

VLBI is a worldwide network of telescopes that matches simultaneous observations in different sites, exploiting the phase information to construct a world-wide interferometer.

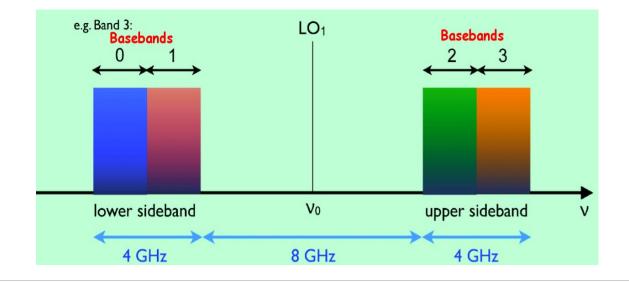

At 1 mm and a baseline of 9000 km offers resolution of about 20 microarcseconds ALMA will increase the sensitivity by more than an order of magnitude

This capability will allow the shadow of the event horizon in the black hole at the Galactic Centre , the relativistic jet flows in AGN and the dusty winds near stellar surfaces to be imaged

ALMA spectral properties: receivers

Table A-4: Properties of ALMA Cycle 3 Receiver Bands

Band	Frequency range ¹ (GHz)	Wavelength range (mm)	IF range	Туре
3	84 - 116	3.6 - 2.6	4-8	2SB
4	125 – 163	2.4 - 1.8	4 - 8	2SB
6	211 – 275	1.4 - 1.1	5 – 10	2SB
7	275 – 373	1.1-0.8	4 - 8	2SB
8	385 – 500	0.78 – 0.60	4 – 8	2SB
9	602 – 720	0.50 - 0.42	4 - 12	DSB
10	787 – 950	0.38 - 0.32	4-12	DSB
9	602 – 720	0.50 - 0.42	4 - 12	


Receivers are couple of dipoles, so split the signal into **2 polarizations** By combining the indipendent polarizations chains it can reconstruct all the Stokes parameters

The coherent receivers map two frequency regions to an fixed Intermediate Frequency by mixing the signal with a Tunable Local Oscillator.

Hence the set up is constituted by a Lower Sideband, a gap, and an Upper sideband centered at a certain rest frequency

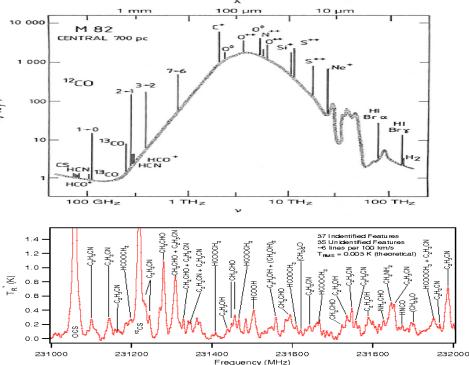
The gap size and the width of the sidebands are fixed (depends on the IF) but might be different in different bands The PI can chose the RF (i.e. tune the LO)

ALMA spectral properties: receivers

The receivers allows up to 4 x 2 GHz-wide Basebands that can be placed in one sideband or distributed between the 2 Sidebands.

A maximum available 8 GHz bandwidth is achieved when the 4 basebands are chosen not to overlap by the PI.

Archive data reflect the PI choices

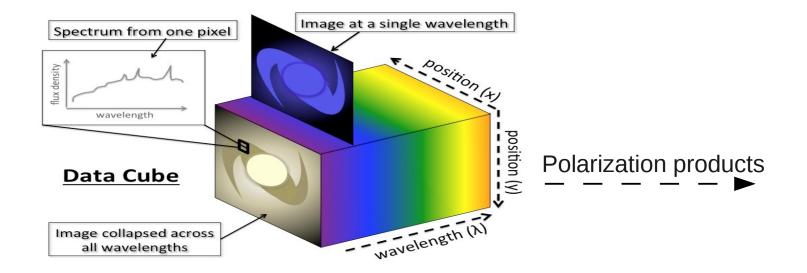

Query Form Results Table

Submit download request

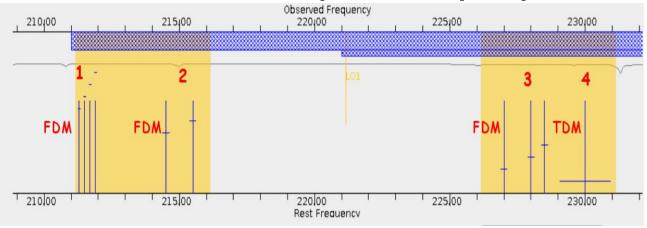
Showing 28 of 28 rows. More columns													
	Project code	Source name	RA	Dec	Band	Integr	ation	Release dat	e 🔺 🛛 Ve	locity r	resolution	Frequency support	
Filter:										n/s ∣≎]			
										//S 🗸			
	2011.0.00020.S	NGC 1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-01-12	2 83	84.09		344.15357.85GHz	
	2011.0.00020.S	NGC 1614	04:34:00.03	-08:34:44.6	7	120.9	5	2013-01-12	2 85	51.55		336.17351.86GHz	
	2011.0.00768.S	NGC1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-10-1	5 84	6.76		<u>337.97353.59GHz</u>	
	2011.0.00768.S	NGC1614	04:34:00.03	-08:34:44.6	7	120.9	5	2013-10-1	5 84	6.76		<u>337.97353.59GHz</u>	
	2011.0.00768.S	NGC1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-10-1	5 84	6.76		<u>337.97353.59GHz</u>	=
	2011.0.00182.S	NGC 1614	04:34:00.03	-08:34:45.2	9	151.2		2013-12-2	1 13	8784.20	C	675.82683.31GHz	
	2011.0.00182.S	NGC 1614	04:34:00.03	-08:34:45.2	9	151.2		2013-12-2	1 13	8784.20	C	675.82683.31GHz	
	2013.1.01172.S	ngc_1614	04:34:00.05	-08:34:59.0	6	151.2		2015-08-08	3 26	25.60		214.12232.20GHz	
	<u>2013.1.01172.S</u>	ngc_1614	04:34:00.05	-08:34:45.2	6	151						214.12232.20GHz	
	2013.1.01172.S	ngc_1614	04:34:00.05	-08:34:31.5	6	151	Frequen	су	Resolutio	on	Polarization	214.12232.20GHz	
	2013.1.01172.S	ngc_1614	04:34:00.05	-08:34:45.2	3	30.1	98.6210	0.62GHz	125000.00	DkHz	XX YY	98.68114.41GHz	
	2013.1.00991.S	NGC_1614	04:34:00.03	-08:34:44.6	3	60.4	100.441	L02.44GHz	125000.00	0kHz	XX YY	98.62114.42GHz	
	2013.1.00991.S	NGC_1614	04:34:00.03	-08:34:44.6	3	60.4	110.671	L12.55GHz	3906.25kH	Ηz	XX YY	93.75109.42GHz	
	2013.1.00991.S	NGC_1614	04:34:00.03	-08:34:44.6	3	120	112,541	L14.42GHz	3906.25kH	Ηz	XX YY	<u>98.66114.48GHz</u>	
	<u>2013.1.00991.S</u>	NGC_1614	04:34:00.03	-08:34:44.6	3	120						98.66114.48GHz	

Results Bookmark Export Table Results Help

Continuum vs spectral line



Digital correlators can be set up to different bandwidth and spectral resolution.


Continuum can be observed with large bandwidth and low spectral resolution (broad frequency channels)

The narrower are the spectral lines the higher is the spectral resolution requested to sample it.

Hence data products are always 4D cubes: Ra, dec, frequency channels, polarization products

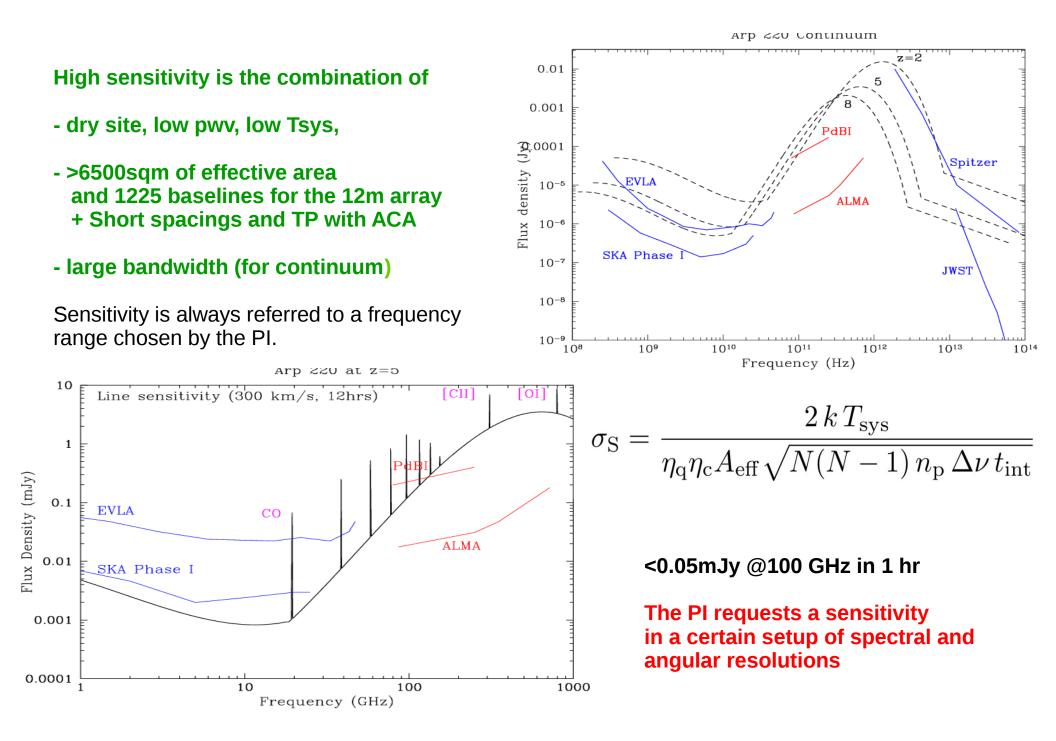
ALMA spectral properties: correlator

Each baseband may be divided in up to 4 spectral windows by allocating a fraction of the correlator resources (up to 3840 channels in double pol) to each window.

Typical purposes:	Mode	Polari- zation	Bandwidth per baseband (MHz)	Number of channels per baseband	Channel Spacing (MHz)	Velocity width at 300 GHz (km/s)
ра розов. Г	7	Dual	1875	3840	0.488	0.48
Spectral scans	8	Dual	938	3840	0.244	0.24
r.	9	Dual	469	3840	0.122	0.12
Targeted imaging of	10	Dual	234	3840	0.061	0.06
moderately narrow lines: cold clouds /	11	Dual	117	3840	0.0305	0.03
protoplanetary disks	12	Dual	58.6	3840	0.0153	0.015
· · · L	6	Single	58.6	7680	0.00763	0.008
"Continuum" or broad lines	69	Dual	2000	128	15.625	15.6
or broad lines	71	Single	2000	256	7.8125	7.8

Frequency division mode:

small bandwidth high resolution (spectral lines)


Time division mode:

large bandwidth low resolution (continuum)

The PI can request to bin the channels at the correlator stage (i.e. reduce the resolution in the data) to reduce the data rate

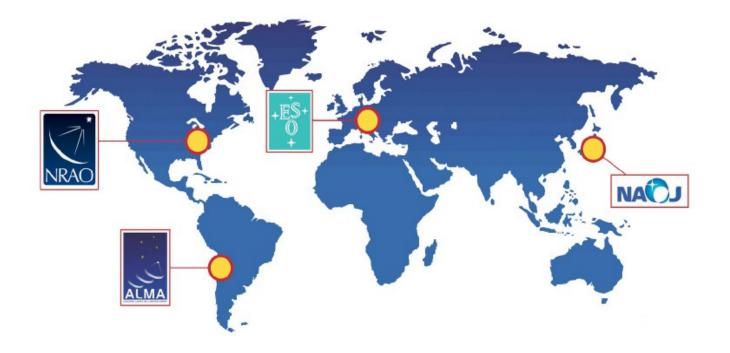
Large number of modes \rightarrow high flexibility for different science cases

ALMA sensitivity

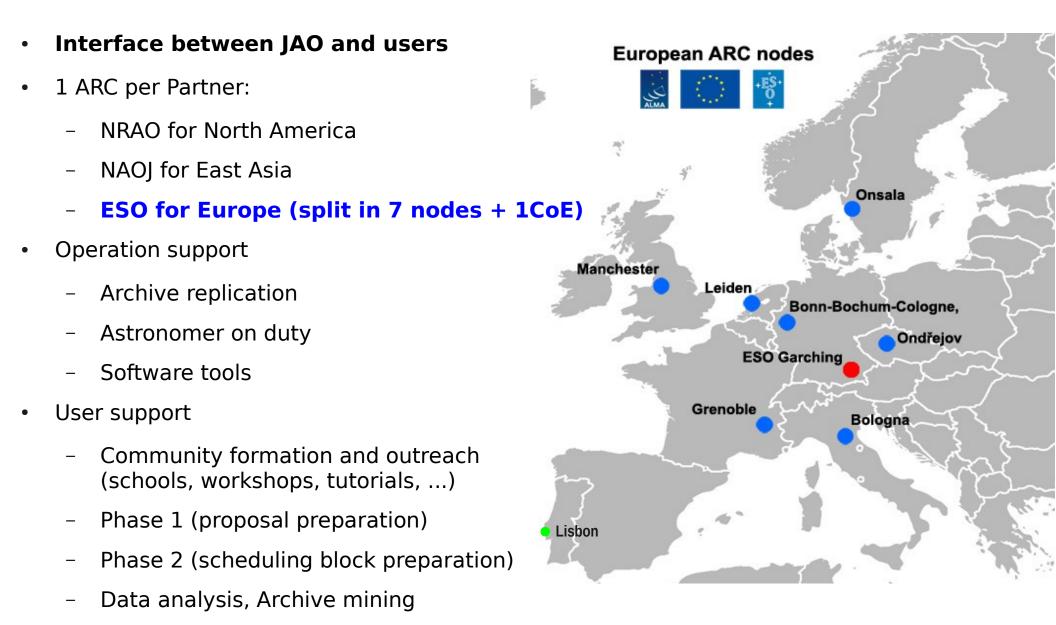
The Science Goal: Sensitivity Calculator

http://almascience.eso.org/call-for-proposals/sensitivity-calculator

Common Paramet	ers										
	Dec		00:00:00.0	00							
	Polarization	olarization		Dual					-		
	Observing Free	bserving Frequency andwidth per Polarization			GHz		-				
	Bandwidth per					GHz			-		
	racer rapear		Automatic Choice								
	Column Dens	ity	0.913mm (3	Brd (Octile)						
	tau/Tsky		tau0=0.158	3, Ts	ky=39	.538					
	Tsys		157.027 K								
Individual Parame	ters										
	12m Array				7m A	rray			Total Pow	e <mark>r Arr</mark> a	iy 🛛
Number of Antenn	as 34				9				2		
Resolution	0.00000	arcsec		-	5.97	74554 ar	csec		17.923662	arcseo	:
Sensitivity(rms)	0.00000	Jy		•	0.000	000	Jy	-	0.00000	Jy	-
(equivalent to)	Infinity	к		•	0.000	000	к	-	0.00000	к	-
Integration Time	0.00000	s		•	0.000	000	s	-	0.00000	s	-
			Integrat	ion	Time	Unit Op	tion	Aut	omatic		-
	Calculate	e Integration	Time	(alcul	ate Sen	sitivi	tv]		

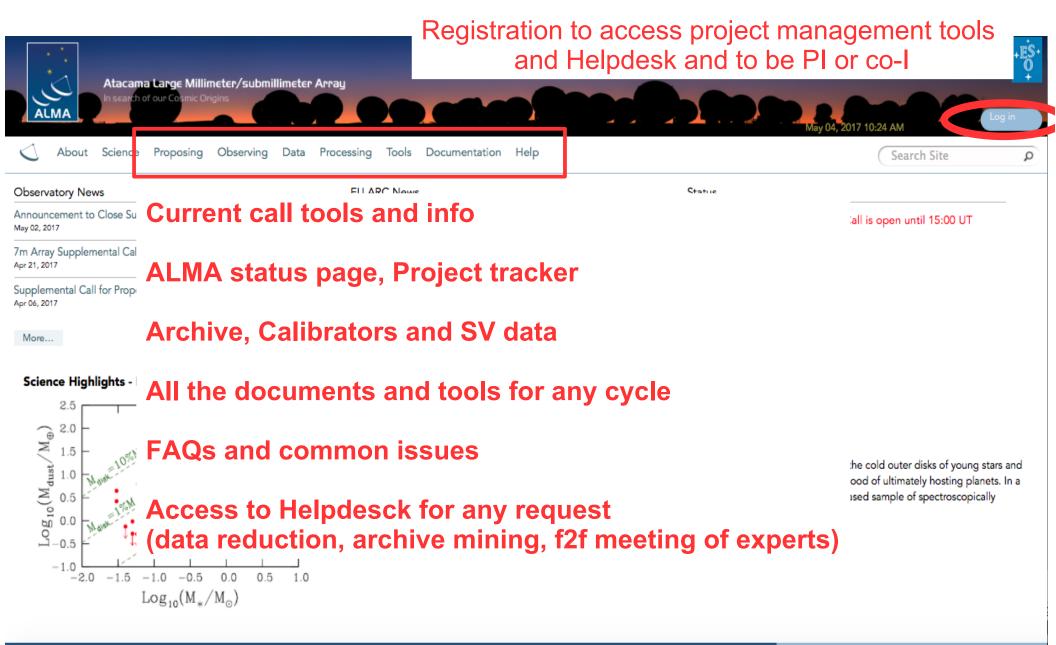

(See tutorial on Sensitivity Calculator)

ALMA organization

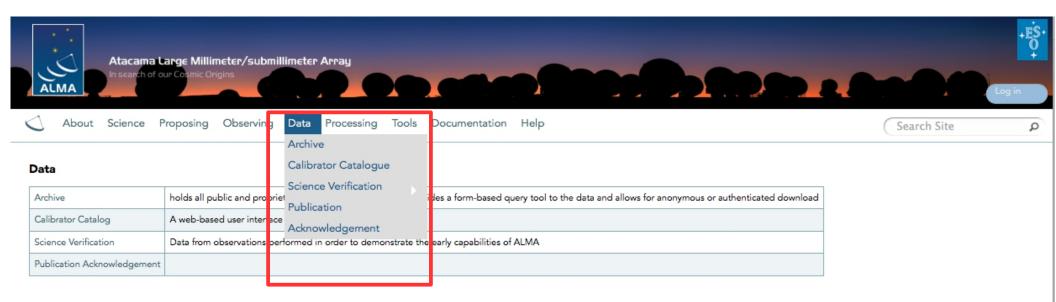

ALMA is a world wide collaboration

Contributors share the observing time an host a mirror of the archive

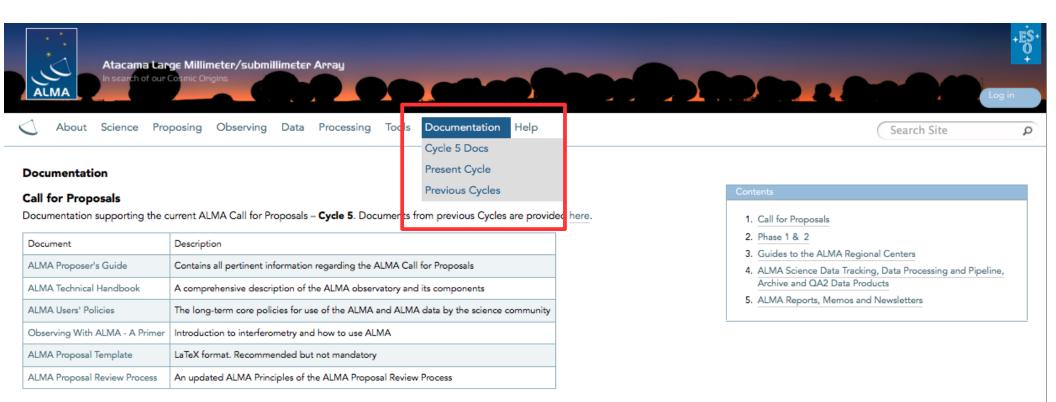
- Europe: **ESO** (14 countries) \rightarrow 30%
- North America: **NRAO** (USA, Canada) \rightarrow 30%
- East Asia: **NAOJ** (Japan, Taiwan) \rightarrow 20%
- \succ Chile → 10%



The ALMA Regional Centres (ARCs)



– F2F user support, Helpdesk

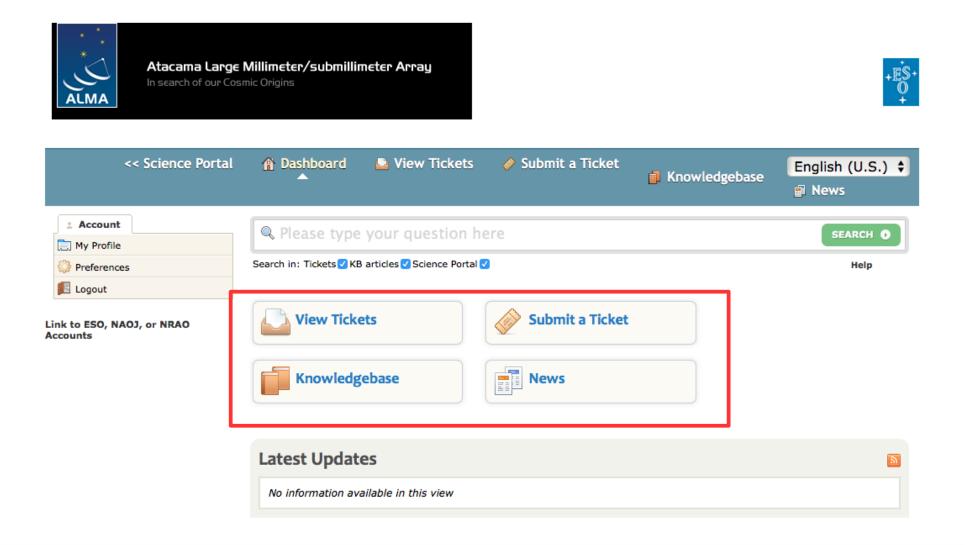

Enter the ALMA world through the ALMA Science Portal http://almascience.eso.org/

Access the ALMA data http://almascience.eso.org/alma-data

Access the documents http://almascience.eso.org/documents-and-tools

Phase 1 & 2

ALMA Phase 1 (observing proposal) and Phase 2 (telescope runfiles for accepted proposals) materials are submitted through the <u>ALMA Observing Tool (OT)</u>. Below are documentation which will aid the created and submitted of Phase 1 and Phase 2 with the OT.


Document	Description					
OT Quickstart	Quick Start Guide for using the Observing Tool					
OT User Manual	Describes how to use the Observing Tool for preparing ALMA proposals					
OT Reference Manual	An in-depth description of the Observing Tool					
	Site Map Accessibility Contact Privacy Statement ESO NRAO NAOJ					

Access the FAQ - Knowledgement

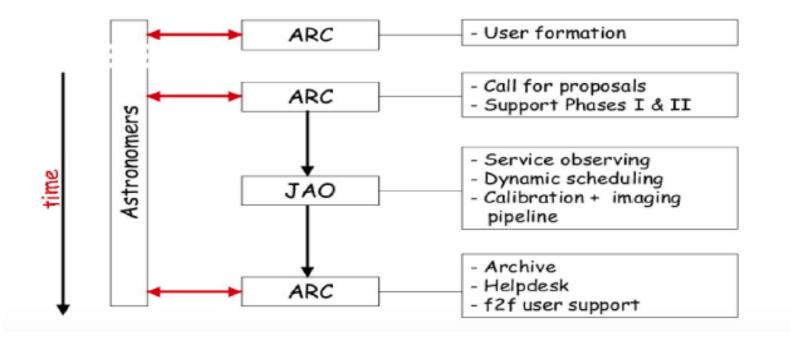
https://help.almascience.org/index.php?/default/Knowledgebase/List

Atacama Large I In search of our Cosm	Millimeter/submillimeter Array mic Origins		
<< Science Portal 🛛 😭 🛛	Dashboard 🛑 Knowledgebase	News	English (U.S.)
Login Remember me	Rease type your search qu	aery here	SEARCH O
Login » Knowledgebase	Knowledgebase		
General ALMA Queries (39)	Most Popular	Recent Artic	les
Cycle 4 (5)	1. How do I model the ALMA prin can I use that model to obtain		e there antenna position problems in data taken tween 25th December 2016 and
Resources & Observer Support (14)	2. 📋 What are the frequency refere	ence frames in CASA? 2. 📄 Is	it possible to resume interrupted downloads?
Project Planning (37)	 How do I convert flux measur km/s or K km/s into the peak 		n I search for a list of sources at the same ne?
ALMA Observing Tool (OT) (47) Proposal Handling (6) Auching & Data Patriagel (20)	 4. What do I do if I can't get the 5. How can I estimate the Peak 	Flux Density per be	n I see which data are public but have not yet en published?
Archive & Data Retrieval (26) Offline Data Reduction and/or	synthesised beam using flux r 6. 📄 How do I arrange a visit to on	e of the ARCs? 5?	
ASA (37)	 Will re-reduction improve the products provided by the arch 	Cycle u data	der what conditions can I request the raw data my observing program be deli
	 Where can I find ALMA docum manuals? 	entation and	hat is the difference between a standard and a n-standard observing mode for
			by I request an extension to my observing ogram's proprietary period?

Access the Helpdesk Register on the SP to access!!! https://help.almascience.org/index.php?/eu

A project lifetime: phase 1 Proposal submission

PI has a good idea!


PI estimates feasibility	Simulations are not compulsory (Sensitivity Calculator, OST, CASA)
PI splits project in Science Goals	Minimum proposed observational unit including targets in the same sky region that roughly share the same calibration and spectral setup
PI writes the science case in pdf and register to the Science Portal	Max 4 page, font no smaller than 12, all included (<20MB) www.almascience.org
PHASE I – Proposal submission	With the ALMA Observing Tool (OT) A copy of the project with the project ID must be saved and should be used for any resubmission within the deadline
TAC evaluation	A=high ranked pass to Cycle 4 if not finished B=high ranked but not passed over C=maybe filler (depends on time shares and ranking)

Project ID (assigned at first submission):

YYYY.R.CCCCC.X R= number of call for the submission year CCCCC= sequential number of submitted X= type of proposal

A project lifetime: phase 2 Observing process

PHASE II – Observing process	S
Scheduling Block	Each SG is converted into a Scheduling Block, an observational unit including targets in the same sky region and their Calibrators to be observed with the same instrumental setup. They are the minimum set of instructions to perform an observation.
Observations	Projects are dynamically scheduled according to telescope configuration, weather, ranking, project status
Quality assessment	QA0 and 1 = telescope conditions QA2 = Check for PI sensitivity requests performed by ARC staff
Data archival and delivery	1 yr of proprietary period before data are public through the archive

(See talk on Archive)

Important dates

Date	Event
20 March 2018	Release Call for Proposals Cycle 6 + Documentation & Tools
19 April 2018 15:00 UT	Proposal submission deadline
End of July 2018	Announcement outcome review process
6 September 2018	Submission Phase2 material by Pls
October 2018	Start observations Cycle 6
September 2019	End of Cycle 6

CYCLE 6: What's Available

Antennas: 43 in 12-m array 10 x 7-m + 3 x 12-m TP in ACA

Receiver bands: 3, 4, 5, 6, 7, 8, 9, and 10

Time: 4000 hrs with 12-m array + 3000 hrs ACA [PI+DDT+Cycle5 priority A carry-overs] Feb and May 2019 not available

≤ 20% non-standard (including ≤ 5% mm-VLBI)
≤ 15% Large Programs
≤ 5% DDT

CYCLE 6 Available receivers

Band 3	Frequency (GHz) 84 – 116	Wavelength (mm) 2.6 – 3.6	FOV (arcsec) 73 – 53	Cont Sens (mJy/beam) 0.088
4	125 – 163	1.8 – 2.4	49 – 38	0.12
5	163 – 211	2.4 – 1.1	38 – 22	0.12
6	211 – 275	1.1 – 1.4	29 – 22	0.12
7	275 – 373	0.8 – 1.1	22 – 16	0.22
8	385 — 500	0.6 – 0.8	16 – 12	0.42
9	602 – 720	0.4 – 0.5	10 – 8.5	2.0
10	787 – 950	0.3 – 0.4	7.8 – 6.5	4.6

CYCLE 6: observing mode

- Spectral line and continuum observations in all bands with the 12-m Array and the 7-m Array
- **Single field interferometry (all bands)** with the 12-m Array and the 7-m Array
- Mosaics (Bands 3 to 9) with 12-m Array and the 7-m Array
- Single dish spectral line observations in Bands 3 to 8 No stand-alone TP-array (and no TP at all for B9, 10)
- ACA stand-alone (standard mode only).

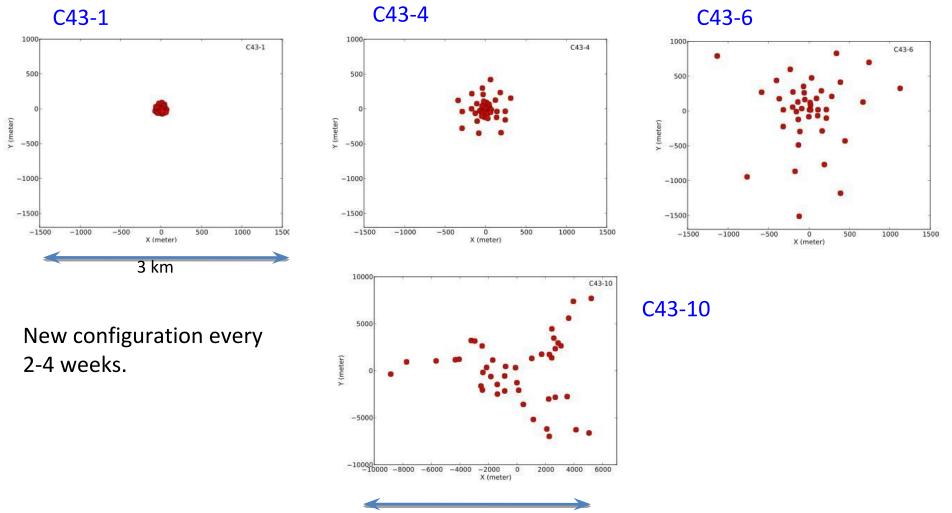
ACA stand-alone in Band 8

- **Solar observing mode**; Bands 3, 6. Only scheduled in certain periods.
- Simultaneous observations ACA and main array

CYCLE 6: polarization capabilities non standard mode

Full polarization for Bands 3, 4, 5, 6 and 7 on the **12-m Array** (including circular) for continuum and spectral-line, single-field, on-axis, observations. Not offered for spectral scan or mosaics

The field of view is limited to:


the inner **1/3** of the primary beam **for linear polarization** the inner **1/10** of the primary beam **for circular polarization**

The minimum detectable degree of circular polarization is currently 1.8% of the peak flux for both continuum and spectral-line data.

For a proper calibration full polarization observations require about three hours of parallactic angle coverage. Each Science goal will have the time estimate set to 3 hrs.

Cycle 6 : configurations and baselines

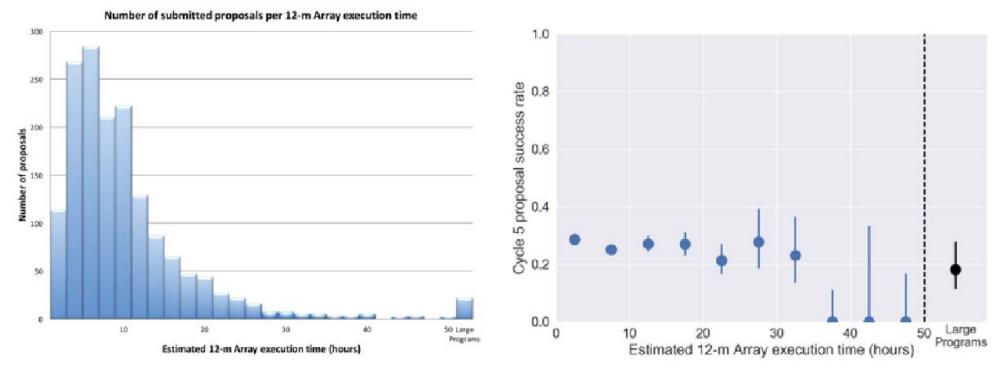
Bands 3 - 6 $b_{max} = 16 \text{ km}$ Band 7 $b_{max} = 8.5 \text{ km}$ Band 8, 9, 10 $b_{max} = 3.6 \text{ km}$

16 km

CYCLE 6 standard/non standard

Standard modes have been well characterized and the observations are calibrated with the ALMA data reduction pipeline. Non-standard modes are not as well characterized and require manual calibration by ALMA staff.

Up to 20% of the observing time in Cycle 6 will be allocated to proposals requesting **non-standard modes**, which include:


- Band 9 and 10 observations
- Band 7 observations with maximum baselines > 5 km
- All polarization observations
- Spectral scans
- Bandwidth switching projects (less than 0.9375 GHz aggregate bandwidths over all spectral windows)
- Solar observations (Bands 3 and 6)
- VLBI observations
- User-specified calibrations
- Astrometry

CYCLE 6: PROPOSAL TYPES

•Regular proposals.

< 50 hrs (12-m) or < 150 hrs (ACA standalone).

Can be standard & non-standard, time-critical, multi-epoch, monitoring.

The requested time of the majority of Cycle 5 proposals is between two and ten hours of 12-m Array time.

The success rate of proposals was roughly constant up to at least 30 hours of requested 12-m Array time

ALMA continues to encourage the community to submit Regular Proposals that request over 10 hours of 12-m Array time.

CYCLE 6: PROPOSAL TYPES

 Target of Opportunity (ToO) As regular proposal, but the target list can be specified at the moment of triggering.
 Submit at regular deadline.

Director's Discretionary Time (DDT) Can be submitted any time; special policies.
 < 5% of the available time

• mm-VLBI; Bands 3, 6;

Band 3 in concert with Global Millimeter VLBI Array (proposal deadline 1/2/18); Band 6 in concert with the Event Horizon Telescope Consortium (ALMA deadline) <**5% total time** (included in the 20% for non standard); fixed period (March/April 2019, compact config: b_{max} < 700m)

Large programs. Cannot be done as series of normal proposals;
 > 50 hrs on the 12-m Array (with or without accompanying ACA time)
 > 150 hrs on the ACA in stand-alone mode
 Only standard obs modes and no time-critical or ToO obs's
 Contact ARC nodes
 Up to 15% of the time may be allocated to Large Programs:
 600 hrs for the 12-m Array and 450 hrs for ACA stand-alone
 scheduling constraints based on LST and configs (consult documentation)

Resubmission

New proposal to observe SGs from an active program.

Is considered a *resubmission* if SGs are duplications (=not different enough; details on next slide) *and* PI of either proposal appears as investigator on the other one.

Note that: if observations successfully completed in Cycle 4/5, relevant portions Cycle 6 proposal will be cancelled. Obs's started in prev. cycle and accepted in Cycle 6 will be *observed with same setup* as in prev. cycle, even though it has "slightly changed" in current cycle.

Duplication

A project is considered a **duplication** if the observation is similar to an already existing ALMA observation (public/non-public) present in the ALMA archive.

Definition of similar in ALMA User policy document, appendix A:

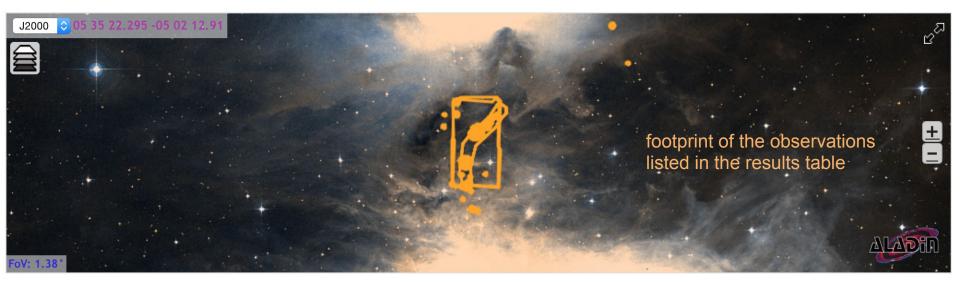
- angular resolution is within a factor ≤ 2 of archival data
- single pointing: coordinates overlap within HPBW of archival data
- mosaic: 50% of pointing are within HPBW of archival data
- line: central frequency within spw of archival data and sensitivity per channel (after smoothing to the same resolution) is within a factor ≤ 2 of archival data
- continuum: sensitivity is within a factor ≤ 2 of archival data and requested frequency is within a factor 1.3 of the archival one
- solar observation non checked for duplicates.

https://almascience.eso.org/proposing/duplications

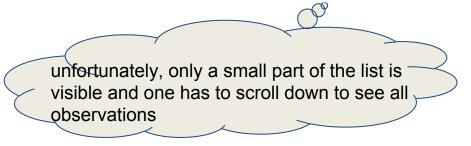
PIs are responsible for checking their proposed observations against the Archive and the list of Cycles 4 and 5 Grade A programmes provided by ALMA:

Check the ALMA archive https://almascience.eso.org/alma-data/archive

Query Form Results Table			ALMA Science Archive
Search Reset			Query Help
Largest angular scale radius f	 Energy Frequency Bandwidth Spectral resolution Band search by coordinates and than by source name can be arbitrary) 	© Time Observation date Integration time	➤ Polarisation Polarisation type
• Observation Line sensitivity (10 km/s) Continuum sensitivity Water vapour	Project Project code Project title PI name Proposal authors Project abstract Publication count Science keyword	Publication Bibcode Title First author Authors Abstract Year Lea	 Options View: observation project publication public data only science observations only


or try to use **astroquery** a python based query interface to the ALMA archive (not an ALMA tool) https://astroquery.readthedocs.io/en/latest/alma/alma.html

Query Form Results Table


ALMA Science Archive

Submit download request

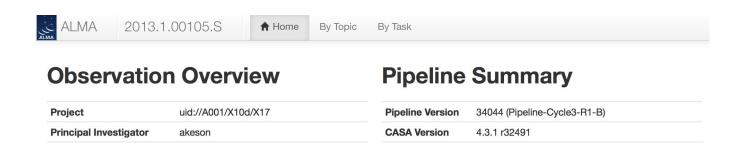
Close Viewer Results Bookmark Export Table Results Help

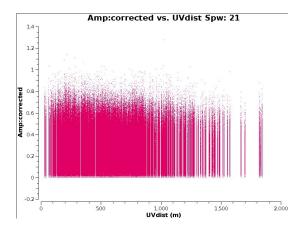
More c	umns Showing 97 of 97 rows.									
	Project code	Source name	RA	Dec	Band	Integration	Release date 🔺	Velocity resolution	Frequency support	Pub
Filter:			H:M:S	D:M:S		seconds 🗘		m/s 🗘		
	2013.1.00662.S	OMC-2	05:35:22.29	-05:02:12.9	3	1052.803	2016-05-04	196.35	90.6293.19GHz	<u>0</u>
	2013.1.00662.S	OMC-2	05:35:22.29	-05:02:12.9	3	159.718	2016-12-07	196.32	90.6293.20GHz	<u>0</u>
	2013.1.00231.S	MMS1	05:35:18.03	-05:00:17.8	7	544.320	2017-03-11	53309.11	335.49351.49GHz	0

ALMA Request Handler					Kazi Rygl
			M	y Requests	Logout
Kazi Rygl: Request #401451770 ⊻					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Request Title: <u>Click to edit</u>					
Download Selected					
Download Selected					
🗸 readme 🗸 product 🗌 raw 🦳 raw (semipass)					
Project / OUSet / Executionblock	File			Size	Accessible
🔻 📄 📄 Request 401451770					
🔻 回 🚞 Project 2013.1.00105.S					
🗹 💾 readme	2013.1.00105.S.readr	ne.txt			
Science Goal OUS uid://A001/X12e/X23d					
🔻 📄 🚞 Group OUS uid://A001/X12e/X23e					
Member OUS uid://A001/X12e/X23f					
SB UX_Tau_a_06_TE					
🗹 📄 product	2013.1.00105.S uid	A001 X12e X2	<u>3f 001 of 001.ta</u>	ar 3.8GE	s 🖌
🕞 💾 raw	2013.1.00105.S_uid	A002 Xaa4256	X309a.asdm.sd	m.tar 6.5GE	8 🖌
				Total	
				62.8GE	5

Download the products of your selected ALMA observation. These will include the fits images made for quality assessment either by the analyst or the pipeline.

When pipeline calibrated, you can find the weblog in the /qa directory: detailed information of observation and calibration


Pipeline Start


Execution

Duration

2015-10-07 21:00:28 UTC

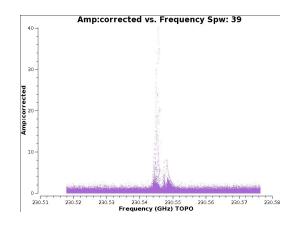
2:52:45

Observation Summary

uid://A001/X12e/X23f

2015-09-18 08:58:05 UTC

2015-09-18 09:41:13 UTC


OUS Status Entity id

Observation Start

Observation End

			Time (UTC)				Baseline Length		
Measurement Set	Receivers	Num Antennas	Start	End	On Source	Min	Max	RMS	Size
Observing Unit Set Status: uid://	/A001/X12e/X	23f Scheduling	Block ID: uid://A001	/X12e/X22e					
Session: session_1									
uidA002_Xaa4256_X309a.ms	ALMA Band 6	34	2015-09-18 08:58:04	2015-09-18 09:41:13	0:18:47	41.4 m	2.1 km	811.4 m	14.0 GB

calibration plots

source spectra and uv plots

When you have downloaded archival products

you can visualize them using

KAFE: Keywords of Astronomical Astronomical FITS

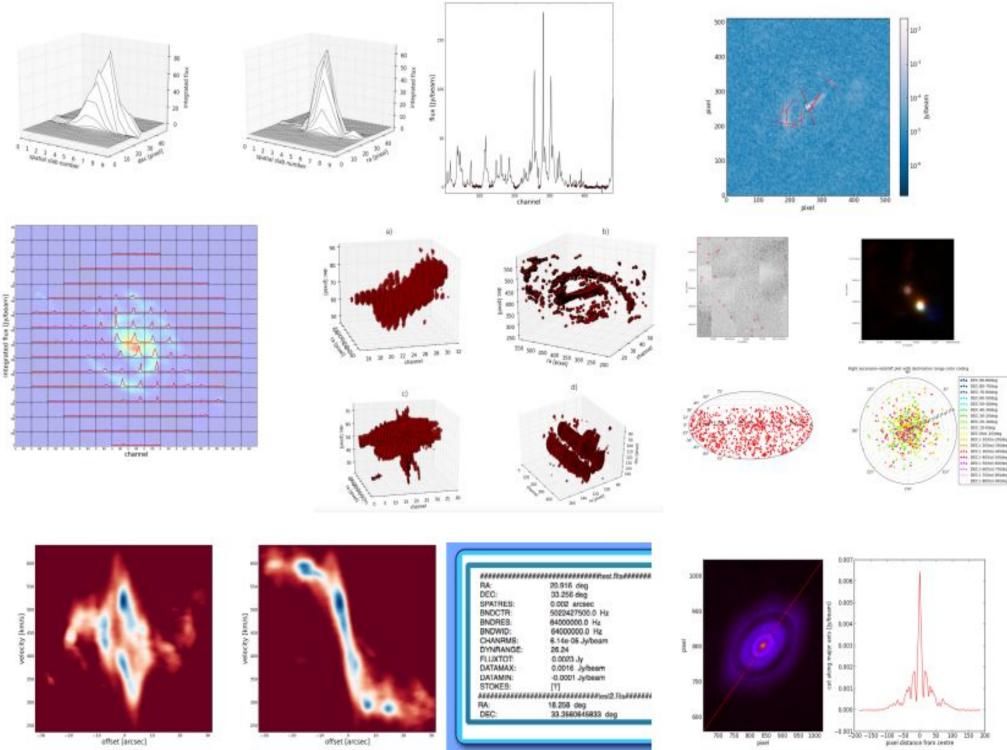
			filters				
POS RANGE	0	CNTRFREQ RAI	NGE	0	FREQRES R	ANGE	0
ANGRES RANGE	0	CHANRMS RAP	NGE	0	FLUX TOTAL	Range	D
requested keywo	ords	spectrum	n analysis	soptions	fur	her analys:	is options
ALL		ALL			ALL (excep	t LC,3colour)	
RA_centre		3D view				detection	
DEC_centre		continuum subtra	action		Source deter	tion SNR layer	
SPATRES 💿		Channel galle	ry		radial	average	
BNDCTR		Spectrum_3D_m	nask		Ima	je cuts	
BNDRES		Spectrum inner qu	uarter	•	power	spectrum	
BNDWID		Spectrum around	max		Polariza	tion maps	
CHANRMS 🛛		Spectral galler	ry		Ligh	tcurve	
DYNRANGE 🛛		3D posvel			3-colo	ur image	
FLUXTOT 💿		moments					
DATAMAX 💿		PosVel along maj/n	nin axis				
DATAMIN		Spectral fit					
STOKES		Cube morph					
		cata	log selec	tion			
HDF		ATHDFSOID		HUDF		Chandra DFS	-
Chandra DFN		COSMOS Chandra bright src	-	COSMOS VLA deep		FERMILAC	
FRICAT		FRIICAT		BZCAT		SPTSZSPSC	

cross-match query and output specifications

lical stronomical FITS integes

Burkutean et al. submitted

Please write to kafe@ira.inaf.it for access information to the web interface and the KAFE cookbook.


AIMS:

 provide advanced image analysis diagnostic plots in the spatial, spectral and temporal domain for user input FITS images

 offer AKF (Liuzzo et al. subm) keyword computation

provide catalogue cross-matching

 minimal user input required (just tick the boxes) - the image computations and the required parameter settings are fully automated

806 850 960 950 1000 pixel

758

affset (arcsec)

offset (arcsec)